A212085 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the complete bipartite graph K_(k,k).
0, 0, 2, 0, 2, 6, 0, 2, 18, 12, 0, 2, 42, 84, 20, 0, 2, 90, 420, 260, 30, 0, 2, 186, 1812, 2420, 630, 42, 0, 2, 378, 7332, 18500, 9750, 1302, 56, 0, 2, 762, 28884, 127220, 121590, 30702, 2408, 72, 0, 2, 1530, 112740, 825860, 1324470, 583422, 81032, 4104, 90
Offset: 1
Examples
A(3,1) = 6 because there are 6 3-colorings of the complete bipartite graph K_(1,1): 1-2, 1-3, 2-1, 2-3, 3-1, 3-2. Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, ... 2, 2, 2, 2, 2, 2, 2, ... 6, 18, 42, 90, 186, 378, 762, ... 12, 84, 420, 1812, 7332, 28884, 112740, ... 20, 260, 2420, 18500, 127220, 825860, 5191220, ... 30, 630, 9750, 121590, 1324470, 13284630, 126657750, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Wikipedia, Chromatic Polynomial
Crossrefs
Programs
-
Maple
A:= (n, k)-> add(Stirling2(k, j) *mul(n-i, i=0..j-1) *(n-j)^k, j=1..k): seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
a[n_, k_] := Sum[(-1)^j*(n-j)^k*Pochhammer[-n, j]*StirlingS2[k, j], {j, 1, k}]; Table[a[n-k, k], {n, 1, 11}, {k, n-1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
Formula
A(n,k) = Sum_{j=1..k} (n-j)^k * S2(k,j) * Product_{i=0..j-1} (n-i).
A(n,n)/n = A282245(n).
Comments