A212129 Numbers n such that 10^(2n+1) + 21*10^n + 1 is prime.
2, 3, 11, 12, 15, 42, 311, 314, 579, 1943, 2262, 5199, 7329, 12792
Offset: 1
Examples
1 is not in the sequence since 10^(2*1+1) + 21*10^1 + 1 = 1000 + 210 + 1 = 1211 is composite. 2 is in the sequence since 10^(2*2+1) + 21*10^2 + 1 = 100000 + 2100 + 1 = 102101 is prime.
Crossrefs
Cf. A096594.
Programs
-
Mathematica
Select[Range[500], PrimeQ[10^(2# + 1) + 21 * 10^# + 1] &] (* Alonso del Arte, Feb 17 2013 *)
-
PARI
i=1; while(1, if(ispseudoprime(10^(2*i+1) + 21*10^i + 1), print1("\n"i"\n")); if(i%10==0, print1("*")); i++; next())
Extensions
a(14) from Giovanni Resta, Feb 18 2013
Comments