A260075 Where the first 3n primes are partitioned into 3 sets of cardinality n, the minimum of the largest product.
5, 35, 627, 20553, 859066, 48993082, 3441790495, 287535325407, 28839054633794, 3161858853009549, 416108939893639594, 60850811089314245258, 9874934149007840709407, 1754123227439445139773155
Offset: 1
Keywords
Examples
There are 15 distinct ways to break a set of six elements into three of cardinality 2 each. Among these for the first 6 primes, the partition {{2,13}, {3,11}, {5,7}} can be readily seen to give smallest possible maximum product of 35. So a(2)=35 (and with the convention that the product of a set consisting of one number is that number, a(1)=5 trivially).
Links
- James G. Merickel, Table of n, a(n) for n = 1..14
Crossrefs
Cf. A260079.
Programs
-
PARI
{ p=vector(60,n,prime(n));i=1;while(1, a=vectorsmall(3*i);for(j=1,i,a[j]=1); n=prod(j=1,i,p[j]);r=10^1000; P=prod(j=1,3*i,p[j]);Q=P^(1/3); b=vectorsmall(3*i); for(j=2*i+1,3*i,b[j]=1); while(1, if(n
Q, R=P/n;c=vector(2*i);k=1; for(j=1,2*i,while(a[k],k++); c[j]=k;k++); d=vectorsmall(2*i);for(j=1,i,d[j]=1); e=vectorsmall(2*i);for(j=i+1,2*i,e[j]=1); S=prod(j=1,i,p[c[j]]); while(1, if(S
Comments