cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212134 Number of (w,x,y,z) with all terms in {1,...,n} and median<=mean.

Original entry on oeis.org

0, 1, 12, 57, 172, 405, 816, 1477, 2472, 3897, 5860, 8481, 11892, 16237, 21672, 28365, 36496, 46257, 57852, 71497, 87420, 105861, 127072, 151317, 178872, 210025, 245076, 284337, 328132, 376797, 430680, 490141, 555552, 627297, 705772, 791385, 884556, 985717
Offset: 0

Views

Author

Clark Kimberling, May 04 2012

Keywords

Comments

Also, the number of (w,x,y,z) with all terms in {1,...,n} and median>=mean.
For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Apply[Plus, Rest[Most[Sort[{w, x, y, z}]]]]/2 <= (w + x + y + z)/4, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #},
    {z, 1, #}] &[n]; s)]];
    Flatten[Map[{t[#]} &, Range[0, 50]]]  (* A212134 *)
    (* Peter J. C. Moses, May 01 2012 *)
  • PARI
    concat(0, Vec(x*(1 + 7*x + 7*x^2 - 3*x^3) /(1 - x)^5 + O(x^40))) \\ Colin Barker, Dec 02 2017

Formula

a(n)+ A212135(n) = n^4.
a(n) = n*(n^3 + 2*n^2 - 3*n + 2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1 + 7*x + 7*x^2 - 3*x^3) /(1 - x)^5. - Colin Barker, Dec 02 2017
E.g.f.: exp(x)*x*(2 + 10*x + 8*x^2 + x^3)/2. - Stefano Spezia, Aug 08 2025