A212139 Triangular array: T(n,k) is the number of k-element subsets of {1,...,n} that satisfy mean=median.
1, 2, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 4, 3, 1, 6, 15, 6, 7, 2, 1, 7, 21, 9, 13, 5, 3, 1, 8, 28, 12, 22, 10, 8, 2, 1, 9, 36, 16, 34, 18, 18, 6, 3, 1, 10, 45, 20, 50, 30, 36, 14, 9, 2, 1, 11, 55, 25, 70, 48, 66, 32, 23, 7, 3, 1, 12, 66, 30, 95, 72, 114, 64, 55, 20, 10, 2, 1
Offset: 1
Examples
First 7 rows: 1 2...1 3...3....1 4...6....2...1 5...10...4...3....1 6...15...6...7....2...1 7...21...9...13...5...3...1 T(5,3) counts these subsets: {1,2,3}, {1,3,5}, {2,3,4}, {3,4,5}.
Crossrefs
Cf. A212138.
Programs
-
Mathematica
t[n_, k_] := t[n, k] = Count[Map[Median[#] == Mean[#] &, Subsets[Range[n], {k}]], True] Flatten[Table[t[n, k], {n, 1, 12}, {k, 1, n}]] TableForm[Table[t[n, k], {n, 1, 12}, {k, 1, n}]] s[n_] := Sum[t[n, k], {k, 1, n}] Table[s[n], {n, 1, 22}] (* A212146 *) (% - 1)/2 (* A212147 *) (* Peter J. C. Moses, May 01 2012 *)
Comments