A212158 a(n) = ((prime(n) - 1)/2)!, n >= 2.
1, 2, 6, 120, 720, 40320, 362880, 39916800, 87178291200, 1307674368000, 6402373705728000, 2432902008176640000, 51090942171709440000, 25852016738884976640000, 403291461126605635584000000, 8841761993739701954543616000000
Offset: 2
Examples
a(4) = ((7-1)/2)! = 3! = 6. a(4)^2 = 36 == +1 (mod 7), because (7 + 1)/2 = 4, and 4 is even. a(6) = ((13-1)/2)! = 6! = 720. a(6)^2 = 518400 == -1 (mod 13) = 12 (mod 13) because (13+1)/2 = 7, and 7 is odd.
Links
- Holsztyński Włodzimierz, Congruence x^2==-1 (mod p) (Euler), and a super-Wilson Theorem
Programs
-
Mathematica
((Prime[Range[2,20]]-1)/2)! (* Harvey P. Dale, Jan 24 2021 *)
Comments