A212182 Irregular triangle read by rows T(n,k): T(1,1) = 0; for n > 1, row n lists exponents of distinct prime factors of the n-th highly composite number (A002182(n)), where column k = 1, 2, 3, ..., omega(A002182(n)) = A108602(n).
0, 1, 2, 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 4, 1, 1, 3, 2, 1, 4, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 4, 2, 1, 1, 3, 3, 1, 1, 5, 2, 1, 1, 4, 3, 1, 1, 6, 2, 1, 1, 4, 2, 2, 1, 3, 2, 1, 1, 1, 4, 4, 1, 1, 5, 2, 2, 1, 4, 2, 1
Offset: 1
Examples
First rows read: 0; 1; 2; 1, 1; 2, 1; 3, 1; 2, 2; 4, 1; 2, 1, 1; 3, 1, 1; 2, 2, 1; 4, 1, 1; ... 1st row: A002182(1) = 1 so T(1, 1) = 0; 2nd row: A002182(2) = 2^1 so T(2, 1) = 1; 3rd row: A002182(3) = 4 = 2^2 so T(3, 1) = 2; 4th row: A002182(4) = 6 = 2^1 * 3^1 so T(4, 1) = 1 and T(4, 2) = 1; 5th row: A002182(5) = 12 = 2^2 * 3^1 so T(5, 1) = 2 and T(5, 2) = 1; 6th row: A002182(6) = 24 = 2^3 * 3^1 so T(6, 1) = 3 and T(6, 2) = 1.
References
- S. Ramanujan, Highly composite numbers, Proc. Lond. Math. Soc. 14 (1915), 347-409; reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962.
Links
- Peter J. Marko, Table of i, a(i) for i = 1..10022 (corresponding to first n = 584 rows of irregular triangle; using data from Flammenkamp)
- A. Flammenkamp, Highly composite numbers
- A. Flammenkamp, List of the first 1200 highly composite numbers
- A. Flammenkamp, List of the first 779,674 highly composite numbers
- Peter J. Marko, Table of n, T(n, k) by rows for n = 1..10000 (using data from Flammenkamp)
- S. Ramanujan, Highly Composite Numbers
Formula
Extensions
Edited by Peter J. Marko, Aug 30 2018
Comments