cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212186 Decimal expansion of the integral over exp(x)/sqrt(1-x^2) dx between 0 and 1.

Original entry on oeis.org

3, 1, 0, 4, 3, 7, 9, 0, 1, 7, 8, 5, 5, 5, 5, 5, 0, 9, 8, 1, 8, 1, 7, 6, 9, 8, 6, 3, 1, 8, 7, 7, 9, 4, 7, 6, 7, 2, 2, 8, 9, 0, 9, 2, 0, 3, 3, 6, 1, 3, 6, 8, 3, 5, 0, 9, 7, 2, 4, 8, 8, 8, 2, 6, 1, 9, 6, 8, 1, 4, 0, 3, 2, 6, 9, 9, 3, 9, 9, 9, 5, 8, 0, 2, 7, 8, 4, 6, 5, 6, 6, 3, 6, 1, 4, 8, 3, 9, 7, 6, 5, 8, 2, 8, 1, 1, 9
Offset: 1

Views

Author

R. J. Mathar, Feb 13 2013

Keywords

Comments

This appears as the first integral in an attempt to expand exp(x) in a Chebyshev series between 0 and 1. Other integrals of the higher order terms in that expansion are generally bootstrapped from the lower order terms.
If we substitute x=cos(y), this is the integral over exp(cos(y)) dy from y=0 to y=Pi/2, which matches (apart from the upper limit) eq. 3.915.4 of the Gradsteyn-Ryzhik tables. - R. J. Mathar, Feb 15 2013

Examples

			3.104379017855555098181769863187794767228...
		

Programs

  • Mathematica
    RealDigits[ Pi*(BesselI[0, 1] + StruveL[0, 1])/2, 10, 107] // First (* Jean-François Alcover, Feb 21 2013 *)
    RealDigits[Integrate[Exp[x]/Sqrt[1-x^2],{x,0,1}],10,120][[1]] (* Harvey P. Dale, Jul 05 2025 *)

Formula

Equals Pi*(A197036+A197037)/2 .