A212196 Numerators of the Bernoulli median numbers.
1, -1, 2, -8, 8, -32, 6112, -3712, 362624, -71706112, 3341113856, -79665268736, 1090547664896, -38770843648, 106053090598912, -5507347586961932288, 136847762542978039808, -45309996254420664320, 3447910579774800362340352, -916174777198089643491328
Offset: 0
Examples
The difference table of the Bernoulli numbers, [m] the Bernoulli median numbers. [1] 1/2, -1/2 1/6,[-1/3], 1/6 0, -1/6, 1/6, 0 -1/30, -1/30,[2/15], -1/30, -1/30 0, 1/30, 1/15, -1/15, -1/30, 0 1/42, 1/42,-1/105,[-8/105], -1/105, 1/42, 1/42 0, -1/42, -1/21, -4/105, 4/105, 1/21, 1/42, 0 -1/30, -1/30,-1/105, 4/105, [8/105], 4/105, -1/105, -1/30, -1/30 0, 1/30, 1/15, 8/105, 4/105, -4/105, -8/105, -1/15, -1/30, 0 5/66, 5/66, 7/165, -4/165,-116/1155, [-32/231], -116/1155, -4/165, 7/165, .. . Integral_{x=0..1} 1 = 1 Integral_{x=0..1} (-1)^1*x^2 = -1/3 Integral_{x=0..1} (-1)^2*(2*x^2 - x)^2 = 2/15 Integral_{x=0..1} (-1)^3*(6*x^3 - 6*x^2 + x)^2 = -8/105, Integral_{x=0..1} (-1)^4*(24*x^4 - 36*x^3 + 14*x^2 - x)^2 = 8/105 Integral_{x=0..1} (-1)^5*(120*x^5 - 240*x^4 + 150*x^3 - 30*x^2 + x)^2 = -32/231, ... Integral_{x=0..1} (-1)^n*(Sum_{k=0..n} Stirling2(n,k)*k!*(-x)^k)^2 = BernoulliMedian(n). Compare A164555. - _Peter Luschny_, Aug 13 2017
Links
- Peter Luschny, The computation and asymptotics of the Bernoulli numbers.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
Programs
-
Mathematica
max = 19; t[0] = Table[ BernoulliB[n], {n, 0, 2*max}]; t[n_] := Differences[t[0], n]; a[1] = -1; a[n_] := t[n][[n + 1]] // Numerator; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jun 26 2013 *)
-
Sage
def BernoulliMedian_list(n) : def T(S, a) : R = [a] for s in S : a -= s R.append(a) return R def M(A, p) : R = T(A,0) S = add(r for r in R) return -S / (2*p+3) R = [1]; A = [1/2, -1/2] for k in (0..n-2) : A = T(A, M(A,k)) R.append(A[k+1]) A = T(A,0) return R def A212196_list(n): return [numerator(b) for b in BernoulliMedian_list(n)]
Formula
a(n) = numerator(Sum_{k=0..n} C(n,k)*Bernoulli(n+k)). - Vladimir Kruchinin, Apr 06 2015
Comments