cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212205 G.f.: ((1+2*x)*sqrt(1-6*x^2+x^4)-1+5*x^2-2*x^3)/(2*x*(1-6*x^2)).

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 36, 86, 172, 426, 852, 2162, 4324, 11166, 22332, 58438, 116876, 309042, 618084, 1648154, 3296308, 8851206, 17702412, 47813790, 95627580, 259585002, 519170004, 1415431266, 2830862532, 7747200558, 15494401116, 42545600310, 85091200620, 234346445154, 468692890308, 1294260644906, 2588521289812, 7165245015510, 14330490031020
Offset: 0

Views

Author

N. J. A. Sloane, May 11 2012

Keywords

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<6, [1, 1, 2, 4, 8, 18][n+1],
          (-132*a(n-1) +(660-834*n+84*n^2)*a(n-2) +804*a(n-3)
          +(2981*n-6690-259*n^2)*a(n-4) -72*a(n-5) +6*(n-6)*(7*n-59)*a(n-6))
          / ((n+1)*(7*n-66)))
        end:
    seq(a(n), n=0..40); # Alois P. Heinz, May 21 2013
  • Mathematica
    CoefficientList[Series[((1+2*x)*Sqrt[1-6*x^2+x^4]-1+5*x^2-2*x^3)/(2*x*(1-6*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, May 21 2013 *)

Formula

a(n) ~ 2*2^(3/4)*(1+sqrt(2))^(n+3)/(n^(3/2)*sqrt(Pi)) if n is even and a(n) ~ 2^(3/4)*(1+sqrt(2))^(n+4)/(n^(3/2)*sqrt(Pi)) if n is odd. - Vaclav Kotesovec, May 21 2013
Conjecture D-finite with recurrence: (n+1)*a(n) +2*(n-1)*a(n-1) +6*(-2*n+1)*a(n-2) +12*(-2*n+5)*a(n-3) +(37*n-77)*a(n-4) +2*(37*n-151)*a(n-5) +6*(-n+5)*a(n-6) +12*(-n+7)*a(n-7)=0. - R. J. Mathar, Aug 20 2018