A212212 Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720.
-1, -1, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 2, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 0, -1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0
Offset: 1
Examples
Array begins: -1, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, ... -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ... 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, ... -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, ... 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, ... -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, ... 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, ... ...
References
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- P. Erdős and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1-14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0337828 (49 #2597).
Crossrefs
Programs
-
Mathematica
a[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[a[n-k, k], {n, 1, 15}, {k, 1, n-1}]] (* Jean-François Alcover, Jul 18 2012 *)
Comments