cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060208 a(n) = 2*pi(n) - pi(2*n), where pi(i) = A000720(i).

Original entry on oeis.org

-1, 0, 1, 0, 2, 1, 2, 2, 1, 0, 2, 1, 3, 3, 2, 1, 3, 3, 4, 4, 3, 2, 4, 3, 3, 3, 2, 2, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 3, 2, 4, 3, 5, 5, 4, 4, 6, 6, 5, 5, 4, 3, 5, 4, 3, 3, 2, 2, 4, 4, 6, 6, 6, 5, 5, 4, 6, 6, 5, 4, 6, 6, 8, 8, 7, 6, 6, 6, 7, 7, 7, 6, 8, 7, 7, 7, 6, 6, 8, 7, 6, 6, 6, 6, 6, 5, 6, 6, 5, 4, 6, 6, 8, 8, 8, 7, 9, 9, 11, 11, 11, 10, 12, 11, 10, 10, 9, 9, 9, 8, 7, 7
Offset: 1

Views

Author

Labos Elemer, Mar 19 2001

Keywords

Comments

Rosser & Schoenfeld show 2*pi(x) > pi(2*x) for x > 10. - N. J. A. Sloane, Jul 03 2013, corrected Jul 09 2015

Examples

			n=100, pi(100)=25, pi(200)=46, 2pi(100)-pi(2*100) =4=a(100)
		

References

  • J. Barkley Rosser and Lowell Schoenfeld, Abstracts of Scientific Communications, Internat. Congress Math., Moscow, 1966, Section 3, Theory of Numbers.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
  • Sanford Segal, On Pi(x+y)<=Pi(x)+Pi(y). Transactions American Mathematical Society, 104 (1962), 523-527.

Crossrefs

Programs

  • Magma
    [2*#PrimesUpTo(n) -#PrimesUpTo(2*n): n in [1..200]]; // G. C. Greubel, Aug 01 2024
    
  • Mathematica
    f[n_] := 2 PrimePi[n] - PrimePi[2 n]; Array[f, 122] (* Robert G. Wilson v, Aug 12 2011 *)
  • PARI
    a(n)=2*primepi(n)-primepi(2*n) \\ Charles R Greathouse IV, Jul 02 2013
    
  • SageMath
    [2*prime_pi(n) -prime_pi(2*n) for n in range(1,201)] # G. C. Greubel, Aug 01 2024

Formula

a(n) = Mod[2*PrimePi[n], PrimePi[2n]] = 2*A000720(n) - A000720(2n) for n>1.
a(n) ~ 2n log 2 / (log n)^2, by the prime number theorem. - N. J. A. Sloane, Mar 12 2007
a(n) = -A047886(n,n) (see A212210 to A212213). - Reinhard Zumkeller, Apr 15 2008

Extensions

Edited by N. J. A. Sloane, Jul 03 2013

A212210 Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 1, 1 <= k <= n, where pi() = A000720().

Original entry on oeis.org

-1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 1, 2, -1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 2, 2, 0, 0, 1, 0, 1, 1, 2, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x)+pi(y) >= pi(x+y) for 1 < y <= x.
A006093 gives row numbers of rows containing at least one negative term. [Reinhard Zumkeller, May 05 2012]

Examples

			Triangle begins:
  -1
  -1 0
   0 0 1
  -1 0 0 0
   0 0 1 1 2
  -1 0 1 1 1 1
   0 1 2 1 2 1 2
   0 1 1 1 1 1 2 2
   0 0 1 0 1 1 2 1 1
  -1 0 0 0 1 1 1 1 0 0
  ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Programs

  • Haskell
    import Data.List (inits, tails)
    a212210 n k = a212210_tabl !! (n-1) !! (k-1)
    a212210_row n = a212210_tabl !! (n-1)
    a212210_tabl = f $ tail $ zip (inits pis) (tails pis) where
       f ((xs,ys) : zss) = (zipWith (-) (map (+ last xs) (xs)) ys) : f zss
       pis = a000720_list
    -- Reinhard Zumkeller, May 04 2012
  • Mathematica
    t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)

A212211 Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 2, 2 <= k <= n, where pi() = A000720().

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3
Offset: 2

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.

Examples

			Triangle begins:
  0,
  0, 1,
  0, 0, 0,
  0, 1, 1, 2,
  0, 1, 1, 1, 1,
  1, 2, 1, 2, 1, 2,
  1, 1, 1, 1, 1, 2, 2,
  0, 1, 0, 1, 1, 2, 1, 1,
  0, 0, 0, 1, 1, 1, 1, 0, 0,
  0, 1, 1, 2, 1, 2, 1, 1, 1, 2,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Programs

  • Haskell
    a212211 n k = a212211_tabl !! (n-2) !! (k-2)
    a212211_tabl = map a212211_row [2..]
    a212211_row n = zipWith (-)
       (map (+ a000720 n) $ take (n - 1) $ tail a000720_list)
       (drop (n + 1) a000720_list)
    -- Reinhard Zumkeller, May 04 2012
  • Mathematica
    t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[t[n, k], {n, 2, 13}, {k, 2, n}]] (* Jean-François Alcover, May 21 2012 *)
Showing 1-3 of 3 results.