A212213 Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720.
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 2
Examples
Array begins: 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ... 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, ... 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, ... 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, ... 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, ... ...
References
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- P. Erdős and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1-14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971.
Programs
-
Mathematica
t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n - k + 2, k], {n, 0, 15}, {k, 2, n}] // Flatten (* Jean-François Alcover, Dec 31 2012 *)
Comments