cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000720 pi(n), the number of primes <= n. Sometimes called PrimePi(n) to distinguish it from the number 3.14159...

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A010051 (characteristic function of primes). - Jeremy Gardiner, Aug 13 2002
pi(n) and prime(n) are inverse functions: a(A000040(n)) = n and A000040(n) is the least number m such that A000040(a(m)) = A000040(n). A000040(a(n)) = n if (and only if) n is prime. - Jonathan Sondow, Dec 27 2004
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
A lower bound that gets better with larger N is that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i=0..T(sqrt(N))} A005867(i)/A002110(i). - Ben Paul Thurston, Aug 23 2010
Number of partitions of 2n into exactly two parts with the smallest part prime. - Wesley Ivan Hurt, Jul 20 2013
Equivalent to the Riemann hypothesis: abs(a(n) - li(n)) < sqrt(n)*log(n)/(8*Pi), for n >= 2657, where li(n) is the logarithmic integral (Lowell Schoenfeld). - Ilya Gutkovskiy, Jul 05 2016
The second Hardy-Littlewood conjecture, that pi(x) + pi(y) >= pi(x + y) for integers x and y with min{x, y} >= 2, is known to hold for (x, y) sufficiently large (Udrescu 1975). - Peter Luschny, Jan 12 2021

Examples

			There are 3 primes <= 6, namely 2, 3 and 5, so pi(6) = 3.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 8.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 5.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorems 6, 7, 420.
  • G. J. O. Jameson, The Prime Number Theorem, Camb. Univ. Press, 2003. [See also the review by D. M. Bressoud (link below).]
  • Władysław Narkiewicz, The Development of Prime Number Theory, Springer-Verlag, 2000.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 132-133, 157-184.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section VII.1. (For inequalities, etc.).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Gerald Tenenbaum and Michel Mendès France, Prime Numbers and Their Distribution, AMS Providence RI, 1999.
  • V. Udrescu, Some remarks concerning the conjecture pi(x + y) <= pi(x) + pi(y), Rev. Roumaine Math. Pures Appl. 20 (1975), 1201-1208.

Crossrefs

Closely related:
A099802: Number of primes <= 2n.
A060715: Number of primes between n and 2n (exclusive).
A035250: Number of primes between n and 2n (inclusive).
A038107: Number of primes < n^2.
A014085: Number of primes between n^2 and (n+1)^2.
A007053: Number of primes <= 2^n.
A036378: Number of primes p between powers of 2, 2^n < p <= 2^(n+1).
A006880: Number of primes < 10^n.
A006879: Number of primes with n digits.
A033270: Number of odd primes <= n.
A065855: Number of composites <= n.
For lists of large values of a(n) see, e.g., A005669(n) = a(A002386(n)), A214935(n) = a(A205827(n)).
Related sequences:
Primes (p) and composites (c): A000040, A002808, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Haskell
    a000720 n = a000720_list !! (n-1)
    a000720_list = scanl1 (+) a010051_list  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [ #PrimesUpTo(n): n in [1..200] ];  // Bruno Berselli, Jul 06 2011
    
  • Maple
    with(numtheory); A000720 := pi; [ seq(A000720(i),i=1..50) ];
  • Mathematica
    A000720[n_] := PrimePi[n]; Table[ A000720[n], {n, 1, 100} ]
    Array[ PrimePi[ # ]&, 100 ]
    Accumulate[Table[Boole[PrimeQ[n]],{n,100}]] (* Harvey P. Dale, Jan 17 2015 *)
  • PARI
    A000720=vector(100,n,omega(n!)) \\ For illustration only; better use A000720=primepi
    
  • PARI
    vector(300,j,primepi(j)) \\ Joerg Arndt, May 09 2008
    
  • Python
    from sympy import primepi
    for n in range(1,100): print(primepi(n), end=', ') # Stefano Spezia, Nov 30 2018
  • Sage
    [prime_pi(n) for n in range(1, 79)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

The prime number theorem gives the asymptotic expression a(n) ~ n/log(n).
For x > 1, pi(x) < (x / log x) * (1 + 3/(2 log x)). For x >= 59, pi(x) > (x / log x) * (1 + 1/(2 log x)). [Rosser and Schoenfeld]
For x >= 355991, pi(x) < (x / log(x)) * (1 + 1/log(x) + 2.51/(log(x))^2 ). For x >= 599, pi(x) > (x / log(x)) * (1 + 1/log(x)). [Dusart]
For x >= 55, x/(log(x) + 2) < pi(x) < x/(log(x) - 4). [Rosser]
For n > 1, A138194(n) <= a(n) <= A138195(n) (Tschebyscheff, 1850). - Reinhard Zumkeller, Mar 04 2008
For n >= 33, a(n) = 1 + Sum_{j=3..n} ((j-2)! - j*floor((j-2)!/j)) (Hardy and Wright); for n >= 1, a(n) = n - 1 + Sum_{j=2..n} (floor((2 - Sum_{i=1..j} (floor(j/i)-floor((j-1)/i)))/j)) (Ruiz and Sondow 2000). - Benoit Cloitre, Aug 31 2003
a(n) = A001221(A000142(n)). - Benoit Cloitre, Jun 03 2005
G.f.: Sum_{p prime} x^p/(1-x) = b(x)/(1-x), where b(x) is the g.f. for A010051. - Franklin T. Adams-Watters, Jun 15 2006
a(n) = A036234(n) - 1. - Jaroslav Krizek, Mar 23 2009
From Enrique Pérez Herrero, Jul 12 2010: (Start)
a(n) = Sum_{i=2..n} floor((i+1)/A000203(i)).
a(n) = Sum_{i=2..n} floor(A000010(n)/(i-1)).
a(n) = Sum_{i=2..n} floor(2/A000005(n)). (End)
Let pf(n) denote the set of prime factors of an integer n. Then a(n) = card(pf(n!/floor(n/2)!)). - Peter Luschny, Mar 13 2011
a(n) = -Sum_{p <= n} mu(p). - Wesley Ivan Hurt, Jan 04 2013
a(n) = (1/2)*Sum_{p <= n} (mu(p)*d(p)*sigma(p)*phi(p)) + sum_{p <= n} p^2. - Wesley Ivan Hurt, Jan 04 2013
a(1) = 0 and then, for all k >= 1, repeat k A001223(k) times. - Jean-Christophe Hervé, Oct 29 2013
a(n) = n/(log(n) - 1 - Sum_{k=1..m} A233824(k)/log(n)^k + O(1/log(n)^{m+1})) for m > 0. - Jonathan Sondow, Dec 19 2013
a(n) = A001221(A003418(n)). - Eric Desbiaux, May 01 2014
a(n) = Sum_{j=2..n} H(-sin^2 (Pi*(Gamma(j)+1)/j)) where H(x) is the Heaviside step function, taking H(0)=1. - Keshav Raghavan, Jun 18 2016
a(A014076(n)) = (1/2) * (A014076(n) + 1) - n + 1. - Christopher Heiling, Mar 03 2017
From Steven Foster Clark, Sep 25 2018: (Start)
a(n) = Sum_{m=1..n} A143519(m) * floor(n/m).
a(n) = Sum_{m=1..n} A001221(m) * A002321(floor(n/m)) where A002321() is the Mertens function.
a(n) = Sum_{m=1..n} |A143519(m)| * A002819(floor(n/m)) where A002819() is the Liouville Lambda summatory function and |x| is the absolute value of x.
a(n) = Sum_{m=1..n} A137851(m)/m * H(floor(n/m)) where H(n) = Sum_{m=1..n} 1/m is the harmonic number function.
a(n) = Sum_{m=1..log_2(n)} A008683(m) * A025528(floor(n^(1/m))) where A008683() is the Moebius mu function and A025528() is the prime-power counting function.
(End)
Sum_{k=2..n} 1/a(k) ~ (1/2) * log(n)^2 + O(log(n)) (de Koninck and Ivić, 1980). - Amiram Eldar, Mar 08 2021
a(n) ~ 1/(n^(1/n)-1). - Thomas Ordowski, Jan 30 2023
a(n) = Sum_{j=2..n} floor(((j - 1)! + 1)/j - floor((j - 1)!/j)) [Mináč, unpublished] (see Ribenboim, pp. 132-133). - Stefano Spezia, Apr 13 2025
a(n) = n - 1 - Sum_{k=2..floor(log_2(n))} pi_k(n), where pi_k(n) is the number of k-almost primes <= n. - Daniel Suteu, Aug 27 2025

Extensions

Additional links contributed by Lekraj Beedassy, Dec 23 2003
Edited by M. F. Hasler, Apr 27 2018 and (links recovered) Dec 21 2018

A060208 a(n) = 2*pi(n) - pi(2*n), where pi(i) = A000720(i).

Original entry on oeis.org

-1, 0, 1, 0, 2, 1, 2, 2, 1, 0, 2, 1, 3, 3, 2, 1, 3, 3, 4, 4, 3, 2, 4, 3, 3, 3, 2, 2, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 3, 2, 4, 3, 5, 5, 4, 4, 6, 6, 5, 5, 4, 3, 5, 4, 3, 3, 2, 2, 4, 4, 6, 6, 6, 5, 5, 4, 6, 6, 5, 4, 6, 6, 8, 8, 7, 6, 6, 6, 7, 7, 7, 6, 8, 7, 7, 7, 6, 6, 8, 7, 6, 6, 6, 6, 6, 5, 6, 6, 5, 4, 6, 6, 8, 8, 8, 7, 9, 9, 11, 11, 11, 10, 12, 11, 10, 10, 9, 9, 9, 8, 7, 7
Offset: 1

Views

Author

Labos Elemer, Mar 19 2001

Keywords

Comments

Rosser & Schoenfeld show 2*pi(x) > pi(2*x) for x > 10. - N. J. A. Sloane, Jul 03 2013, corrected Jul 09 2015

Examples

			n=100, pi(100)=25, pi(200)=46, 2pi(100)-pi(2*100) =4=a(100)
		

References

  • J. Barkley Rosser and Lowell Schoenfeld, Abstracts of Scientific Communications, Internat. Congress Math., Moscow, 1966, Section 3, Theory of Numbers.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
  • Sanford Segal, On Pi(x+y)<=Pi(x)+Pi(y). Transactions American Mathematical Society, 104 (1962), 523-527.

Crossrefs

Programs

  • Magma
    [2*#PrimesUpTo(n) -#PrimesUpTo(2*n): n in [1..200]]; // G. C. Greubel, Aug 01 2024
    
  • Mathematica
    f[n_] := 2 PrimePi[n] - PrimePi[2 n]; Array[f, 122] (* Robert G. Wilson v, Aug 12 2011 *)
  • PARI
    a(n)=2*primepi(n)-primepi(2*n) \\ Charles R Greathouse IV, Jul 02 2013
    
  • SageMath
    [2*prime_pi(n) -prime_pi(2*n) for n in range(1,201)] # G. C. Greubel, Aug 01 2024

Formula

a(n) = Mod[2*PrimePi[n], PrimePi[2n]] = 2*A000720(n) - A000720(2n) for n>1.
a(n) ~ 2n log 2 / (log n)^2, by the prime number theorem. - N. J. A. Sloane, Mar 12 2007
a(n) = -A047886(n,n) (see A212210 to A212213). - Reinhard Zumkeller, Apr 15 2008

Extensions

Edited by N. J. A. Sloane, Jul 03 2013

A212210 Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 1, 1 <= k <= n, where pi() = A000720().

Original entry on oeis.org

-1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 1, 2, -1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 2, 2, 0, 0, 1, 0, 1, 1, 2, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x)+pi(y) >= pi(x+y) for 1 < y <= x.
A006093 gives row numbers of rows containing at least one negative term. [Reinhard Zumkeller, May 05 2012]

Examples

			Triangle begins:
  -1
  -1 0
   0 0 1
  -1 0 0 0
   0 0 1 1 2
  -1 0 1 1 1 1
   0 1 2 1 2 1 2
   0 1 1 1 1 1 2 2
   0 0 1 0 1 1 2 1 1
  -1 0 0 0 1 1 1 1 0 0
  ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Programs

  • Haskell
    import Data.List (inits, tails)
    a212210 n k = a212210_tabl !! (n-1) !! (k-1)
    a212210_row n = a212210_tabl !! (n-1)
    a212210_tabl = f $ tail $ zip (inits pis) (tails pis) where
       f ((xs,ys) : zss) = (zipWith (-) (map (+ last xs) (xs)) ys) : f zss
       pis = a000720_list
    -- Reinhard Zumkeller, May 04 2012
  • Mathematica
    t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)

A047886 Triangle read by rows: T(n,k) = pi(n+k) - pi(n) - pi(k), where pi() = A000720 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, -2, 0, 1, 0, -1, -1, -1, -1, 0, 0, -1, -2, -1, -2, -1, -2, 0, 0, -1, -1, -1, -1, -1, -2, -2, 0, 0, 0, -1, 0, -1, -1, -2, -1, -1, 0, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -2, -1, -2, -1, -1, -1, -2, 0, 1, 0, -1
Offset: 0

Views

Author

Keywords

Comments

T(n,0)=0; for n > 0: T(n,1)=A010051(n); T(n,n)=-A060208(n). - Reinhard Zumkeller, Apr 15 2008
A212210-A212213 are the preferred versions of this array.

Examples

			Triangle begins
  0;
  0,  1;
  0,  1,  0;
  0,  0,  0, -1;
  0,  1,  0,  0,  0;
  0,  0,  0, -1, -1, -2;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[PrimePi[n+k]-PrimePi[n]-PrimePi[k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Feb 22 2012 *)

Extensions

More terms from James Sellers, Dec 22 1999

A047885 Array a(m,n) = pi(m+n) - pi(m) - pi(n) read by antidiagonals, where pi() = A000720 (m,n >= 0).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -1, -2, -1, -2, -1, -2, -1, 0, 0
Offset: 0

Views

Author

Keywords

Comments

A212210-A212213 are the preferred versions of this array.

Examples

			Beginning of array is
  0  0  0  0  0  0  0  0 ...
  0  1  1  0  1  0  1  0 ...
  0  1  0  0  0  0 -1 ...
  0  0  0 -1  0 -1 -1 ...
  ...
		

Crossrefs

A212212 Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720.

Original entry on oeis.org

-1, -1, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 2, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 0, -1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.

Examples

			Array begins:
  -1, -1,  0, -1,  0, -1,  0,  0,  0, -1,  0, -1, ...
  -1,  0,  0,  0,  0,  0,  1,  1,  0,  0,  0,  0, ...
   0,  0,  1,  0,  1,  1,  2,  1,  1,  0,  1,  1, ...
  -1,  0,  0,  0,  1,  1,  1,  1,  0,  0,  1,  1, ...
   0,  0,  1,  1,  2,  1,  2,  1,  1,  1,  2,  1, ...
  -1,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   0,  1,  2,  1,  2,  1,  2,  2,  2,  1,  2,  1, ...
   0,  1,  1,  1,  1,  1,  2,  2,  1,  1,  1,  1, ...
   ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Cf. A000720, A212210-A212213, A060208, A047885, A047886. First row and column are -A010051.

Programs

  • Mathematica
    a[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[a[n-k, k], {n, 1, 15}, {k, 1, n-1}]] (* Jean-François Alcover, Jul 18 2012 *)

A212211 Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 2, 2 <= k <= n, where pi() = A000720().

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3
Offset: 2

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.

Examples

			Triangle begins:
  0,
  0, 1,
  0, 0, 0,
  0, 1, 1, 2,
  0, 1, 1, 1, 1,
  1, 2, 1, 2, 1, 2,
  1, 1, 1, 1, 1, 2, 2,
  0, 1, 0, 1, 1, 2, 1, 1,
  0, 0, 0, 1, 1, 1, 1, 0, 0,
  0, 1, 1, 2, 1, 2, 1, 1, 1, 2,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Programs

  • Haskell
    a212211 n k = a212211_tabl !! (n-2) !! (k-2)
    a212211_tabl = map a212211_row [2..]
    a212211_row n = zipWith (-)
       (map (+ a000720 n) $ take (n - 1) $ tail a000720_list)
       (drop (n + 1) a000720_list)
    -- Reinhard Zumkeller, May 04 2012
  • Mathematica
    t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[t[n, k], {n, 2, 13}, {k, 2, n}]] (* Jean-François Alcover, May 21 2012 *)
Showing 1-7 of 7 results.