cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Christopher Heiling

Christopher Heiling's wiki page.

Christopher Heiling has authored 3 sequences.

A267309 Number of discrete vectors with integral components and integral length <= n in a 3-dimensional vectorspace (Partial sums of A016725).

Original entry on oeis.org

6, 12, 42, 48, 78, 108, 162, 168, 270, 300, 378, 408, 486, 540, 690, 696, 798, 900, 1026, 1056, 1326, 1404, 1554, 1584, 1734, 1812, 2130, 2184, 2358, 2508, 2706, 2712, 3102, 3204, 3474, 3576, 3798, 3924, 4314, 4344, 4590, 4860, 5130, 5208, 5718
Offset: 1

Author

Christopher Heiling, Jan 19 2016

Keywords

Comments

This sequence is Z_3(n), where Z_D(n) counts all vectors with integral components and length in a D-dimensional vectorpace within a certain radius. This sequence represents partial sums of A016725.

Examples

			For n = 2 the a(n)= 12 integral solutions of x^2 + y^2 + z^2 <= 2^2 are: {x,y,z} = {{0,0,1}; {0,1,0}; {1,0,0}; {0,0,-1}; {0,-1,0}; {-1,0,0}; {0,0,2}; {0,2,0}; {2,0,0}; {0,0,-2}; {0,-2,0}; {-2,0,0}}.
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} A005875(k^2).
a(n) = Sum_{k=1..n} A016725(k).

A264390 Partial sums of A267326.

Original entry on oeis.org

8, 32, 136, 160, 408, 720, 1176, 1200, 2168, 2912, 3976, 4288, 5752, 7120, 10344, 10368, 12824, 15728, 18776, 19520, 25448, 28640, 33064, 33376, 39624, 44016, 52760, 54128, 61096, 70768, 78712, 78736, 92568, 99936, 114072, 116976, 128232, 137376, 156408
Offset: 1

Author

Christopher Heiling, Jan 12 2016

Keywords

Examples

			For n = 2 the a(n) = 32 integral solutions of x^2 + y^2 + z^2 + t^2 <= 2^2 are: {x,y,z,t} = {{0,0,0,1}; {0,0,1,0}; {0,1,0,0}; {1,0,0,0}; {0,0,0,-1}; {0,0,-1,0}; {0,-1,0,0}; {-1,0,0,0}; {0,0,0,2}; {0,0,0,-2}; {0,0,2,0}; {0,0,-2,0}; {0,2,0,0}; {0,-2,0,0}; {2,0,0,0}; {-2,0,0,0}; {1,1,1,1}; {1,1,1,-1}; {1,1,-1,1}; {1,-1,1,1}; {-1,1,1,1}; {1,1,-1,-1}; {1,-1,1,-1}; {-1,1,1,-1}; {1,-1,-1,1}; {-1,1,-1,1}; {1,-1,-1,-1}; {-1,1,-1,-1}; {-1,-1,1,-1}; {-1,-1,1,-1}; {-1,-1,-1,1}; {-1,-1,-1,-1}}.
		

Crossrefs

Partial sums of A267326.

Programs

  • Maple
    #A264390
    terms := 42:
    (add(q^(m^2), m = -terms..terms))^4:
    seq(add(coeff(%, q, k^2), k = 1..n), n = 1..terms); # Peter Bala, Jan 15 2016
  • PARI
    a000118(k) = if(k<1, k==0, 8 * sumdiv( k, d, if( d%4, d)));
    a(n) = sum(k=1, n, a000118(k^2)); \\ Altug Alkan, Jan 19 2016

Formula

a(n) = Sum_{k = 1..n} A000118(k^2).

A267326 Number of ways writing n^2 as a sum of four squares: a(n) = A000118(n^2).

Original entry on oeis.org

1, 8, 24, 104, 24, 248, 312, 456, 24, 968, 744, 1064, 312, 1464, 1368, 3224, 24, 2456, 2904, 3048, 744, 5928, 3192, 4424, 312, 6248, 4392, 8744, 1368, 6968, 9672, 7944, 24, 13832, 7368, 14136, 2904, 11256, 9144, 19032, 744, 13784, 17784, 15144, 3192
Offset: 0

Author

Christopher Heiling, Jan 13 2016

Keywords

Comments

For all pair of relatively prime numbers k, m this sequence is multiplicative with a factor of 8: a(k*m) = 8*a(k)*a(m). - Christopher Heiling, Apr 02 2017

Examples

			For n = 2 the a(n) = 24 solutions of x^2 + y^2 + z^2 + t^2 = 2^2 are:
{x,y,z,t} = {{0,0,0,2};{0,0,0,-2};{0,0,2,0};{0,0,-2,0};{0,2,0,0};{0,-2,0,0};{2,0,0,0};{-2,0,0,0};{1,1,1,1};{1,1,1,-1};{1,1,-1,1};{1,-1,1,1};{-1,1,1,1};{1,1,-1,-1};{1,-1,1,-1};{-1,1,1,-1};{1,-1,-1,1};{-1,1,-1,1};{1,-1,-1,-1};{-1,1,-1,-1};{-1,-1,1,-1};{-1,-1,1,-1};{-1,-1,-1,1};{-1,-1,-1,-1}}.
		

Crossrefs

Cf. A000118.
Partial sums of this sequence give A264390.
Column k=4 of A302996.

Programs

  • Maple
    terms := 42:
    (add(q^(m^2), m = -terms..terms))^4:
    seq(coeff(%, q, n^2), n = 0..terms); # Peter Bala, Jan 15 2016
  • Mathematica
    a[n_] := SquaresR[4, n^2];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 18 2023 *)

Formula

a(n) = A264390(n) - A264390(n-1) for n > 1 and a(1) = A264390(1) = 2*D.
a(n) = 8*sigma(n^2) if n is odd else 24*sigma(m(n^2)), where sigma(n) = A000203(n) and m(n) = A000265(n) is the largest odd divisor of n. - Peter Bala, Jan 15 2016
a(p^(k+1)) = 8*(p^2 *a(p^k)+p+1) for p prime. In particular a(p) = 8*(p^2+p+1). - Christopher Heiling, Apr 02 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 10 2023