A264390 Partial sums of A267326.
8, 32, 136, 160, 408, 720, 1176, 1200, 2168, 2912, 3976, 4288, 5752, 7120, 10344, 10368, 12824, 15728, 18776, 19520, 25448, 28640, 33064, 33376, 39624, 44016, 52760, 54128, 61096, 70768, 78712, 78736, 92568, 99936, 114072, 116976, 128232, 137376, 156408
Offset: 1
Examples
For n = 2 the a(n) = 32 integral solutions of x^2 + y^2 + z^2 + t^2 <= 2^2 are: {x,y,z,t} = {{0,0,0,1}; {0,0,1,0}; {0,1,0,0}; {1,0,0,0}; {0,0,0,-1}; {0,0,-1,0}; {0,-1,0,0}; {-1,0,0,0}; {0,0,0,2}; {0,0,0,-2}; {0,0,2,0}; {0,0,-2,0}; {0,2,0,0}; {0,-2,0,0}; {2,0,0,0}; {-2,0,0,0}; {1,1,1,1}; {1,1,1,-1}; {1,1,-1,1}; {1,-1,1,1}; {-1,1,1,1}; {1,1,-1,-1}; {1,-1,1,-1}; {-1,1,1,-1}; {1,-1,-1,1}; {-1,1,-1,1}; {1,-1,-1,-1}; {-1,1,-1,-1}; {-1,-1,1,-1}; {-1,-1,1,-1}; {-1,-1,-1,1}; {-1,-1,-1,-1}}.
Links
- Christopher Heiling, Table of n, a(n) for n = 1..150
Programs
-
Maple
#A264390 terms := 42: (add(q^(m^2), m = -terms..terms))^4: seq(add(coeff(%, q, k^2), k = 1..n), n = 1..terms); # Peter Bala, Jan 15 2016
-
PARI
a000118(k) = if(k<1, k==0, 8 * sumdiv( k, d, if( d%4, d))); a(n) = sum(k=1, n, a000118(k^2)); \\ Altug Alkan, Jan 19 2016
Formula
a(n) = Sum_{k = 1..n} A000118(k^2).
Comments