cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A264390 Partial sums of A267326.

Original entry on oeis.org

8, 32, 136, 160, 408, 720, 1176, 1200, 2168, 2912, 3976, 4288, 5752, 7120, 10344, 10368, 12824, 15728, 18776, 19520, 25448, 28640, 33064, 33376, 39624, 44016, 52760, 54128, 61096, 70768, 78712, 78736, 92568, 99936, 114072, 116976, 128232, 137376, 156408
Offset: 1

Views

Author

Christopher Heiling, Jan 12 2016

Keywords

Examples

			For n = 2 the a(n) = 32 integral solutions of x^2 + y^2 + z^2 + t^2 <= 2^2 are: {x,y,z,t} = {{0,0,0,1}; {0,0,1,0}; {0,1,0,0}; {1,0,0,0}; {0,0,0,-1}; {0,0,-1,0}; {0,-1,0,0}; {-1,0,0,0}; {0,0,0,2}; {0,0,0,-2}; {0,0,2,0}; {0,0,-2,0}; {0,2,0,0}; {0,-2,0,0}; {2,0,0,0}; {-2,0,0,0}; {1,1,1,1}; {1,1,1,-1}; {1,1,-1,1}; {1,-1,1,1}; {-1,1,1,1}; {1,1,-1,-1}; {1,-1,1,-1}; {-1,1,1,-1}; {1,-1,-1,1}; {-1,1,-1,1}; {1,-1,-1,-1}; {-1,1,-1,-1}; {-1,-1,1,-1}; {-1,-1,1,-1}; {-1,-1,-1,1}; {-1,-1,-1,-1}}.
		

Crossrefs

Partial sums of A267326.

Programs

  • Maple
    #A264390
    terms := 42:
    (add(q^(m^2), m = -terms..terms))^4:
    seq(add(coeff(%, q, k^2), k = 1..n), n = 1..terms); # Peter Bala, Jan 15 2016
  • PARI
    a000118(k) = if(k<1, k==0, 8 * sumdiv( k, d, if( d%4, d)));
    a(n) = sum(k=1, n, a000118(k^2)); \\ Altug Alkan, Jan 19 2016

Formula

a(n) = Sum_{k = 1..n} A000118(k^2).

A302996 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 4, 2, 0, 1, 8, 6, 4, 2, 0, 1, 10, 24, 30, 4, 2, 0, 1, 12, 90, 104, 6, 12, 2, 0, 1, 14, 252, 250, 24, 30, 4, 2, 0, 1, 16, 574, 876, 730, 248, 30, 4, 2, 0, 1, 18, 1136, 3542, 4092, 1210, 312, 54, 4, 2, 0, 1, 20, 2034, 12112, 18494, 7812, 2250, 456, 6, 4, 2, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of ordered ways of writing n^2 as a sum of k squares.

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1,  ...
  0,  2,   4,   6,    8,    10,  ...
  0,  2,   4,   6,   24,    90,  ...
  0,  2,   4,  30,  104,   250,  ...
  0,  2,   4,   6,   24,   730,  ...
  0,  2,  12,  30,  248,  1210,  ...
		

Crossrefs

Columns k=0..4,7 give A000007, A040000, A046109, A016725, A267326, A361695.
Main diagonal gives A232173.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
          b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n))))
        end:
    A:= (n, k)-> b(n^2, k):
    seq(seq(A(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 10 2023
  • Mathematica
    Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k.

A319617 Number of Integer solutions to w^2 + x^2 + y^2 + z^2 < n^2; number of lattice points inside a 4-sphere of radius n.

Original entry on oeis.org

0, 1, 65, 321, 1257, 2873, 6265, 11377, 20161, 31665, 48945, 71401, 102041, 139481, 188753, 247329, 323697, 409457, 516121, 640393, 789161, 955793, 1153025, 1376305, 1637929, 1921049, 2252889, 2615673, 3033665, 3483633, 3990753, 4547945, 5173145, 5840393, 6589945, 7395921, 8287297, 9238001, 10281977, 11402457, 12633145, 13929377
Offset: 0

Views

Author

Brian J. Harrild, Sep 24 2018

Keywords

Examples

			For n=2 there are 65 lattice points in Z^4 such that w^2+x^2+y^2+x^2 < 4
		

Crossrefs

a(n) = A055410(n) - A267326(n).

Programs

  • Python
    for n in range (0,51):
        NumPoints=0
        for w in range (-n,n+1):
            for x in range (-n,n+1):
                for y in range (-n,n+1):
                    for z in range (-n,n+1):
                        if w**2+x**2+y**2+z**2
    				
Showing 1-3 of 3 results.