A319617 Number of Integer solutions to w^2 + x^2 + y^2 + z^2 < n^2; number of lattice points inside a 4-sphere of radius n.
0, 1, 65, 321, 1257, 2873, 6265, 11377, 20161, 31665, 48945, 71401, 102041, 139481, 188753, 247329, 323697, 409457, 516121, 640393, 789161, 955793, 1153025, 1376305, 1637929, 1921049, 2252889, 2615673, 3033665, 3483633, 3990753, 4547945, 5173145, 5840393, 6589945, 7395921, 8287297, 9238001, 10281977, 11402457, 12633145, 13929377
Offset: 0
Examples
For n=2 there are 65 lattice points in Z^4 such that w^2+x^2+y^2+x^2 < 4
Programs
-
Python
for n in range (0,51): NumPoints=0 for w in range (-n,n+1): for x in range (-n,n+1): for y in range (-n,n+1): for z in range (-n,n+1): if w**2+x**2+y**2+z**2