A048767 If n = Product (p_j^k_j) then a(n) = Product ( prime(k_j)^pi(p_j) ) where pi is A000720.
1, 2, 4, 3, 8, 8, 16, 5, 9, 16, 32, 12, 64, 32, 32, 7, 128, 18, 256, 24, 64, 64, 512, 20, 27, 128, 25, 48, 1024, 64, 2048, 11, 128, 256, 128, 27, 4096, 512, 256, 40, 8192, 128, 16384, 96, 72, 1024, 32768, 28, 81, 54, 512, 192, 65536, 50, 256, 80, 1024, 2048
Offset: 1
Examples
For n=6, 6 = (2^1)*(3^1), a(6) = ([first prime]^pi(2))*([first prime]^pi(3)) = (2^1)*(2^2) = 8. From _Gus Wiseman_, May 04 2019: (Start) For n = 1..20, the prime indices of n together with the prime indices of a(n) are the following: 1: {} {} 2: {1} {1} 3: {2} {1,1} 4: {1,1} {2} 5: {3} {1,1,1} 6: {1,2} {1,1,1} 7: {4} {1,1,1,1} 8: {1,1,1} {3} 9: {2,2} {2,2} 10: {1,3} {1,1,1,1} 11: {5} {1,1,1,1,1} 12: {1,1,2} {1,1,2} 13: {6} {1,1,1,1,1,1} 14: {1,4} {1,1,1,1,1} 15: {2,3} {1,1,1,1,1} 16: {1,1,1,1} {4} 17: {7} {1,1,1,1,1,1,1} 18: {1,2,2} {1,2,2} 19: {8} {1,1,1,1,1,1,1,1} 20: {1,1,3} {1,1,1,2} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Stephan Wagner, The Number of Fixed Points of Wilf's Partition Involution, The Electronic Journal of Combinatorics, 20(4) (2013), #P13.
Crossrefs
Programs
-
Maple
A048767 := proc(n) local a,p,e,f; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*ithprime(e)^numtheory[pi](p) ; end do: a ; end proc: # R. J. Mathar, Nov 08 2012
-
Mathematica
Table[{p, k} = Transpose@ FactorInteger[n]; Times @@ (Prime[k]^PrimePi[p]), {n, 58}] (* Ivan Neretin, Jun 02 2016 *) Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; e >= 0 :> Prime[e]^PrimePi[p]] &, 65] (* Michael De Vlieger, Apr 25 2017 *)
Extensions
a(1)=1 prepended by Alois P. Heinz, Jul 26 2015
Comments