A136009 Primes p for which the least pentagonal number q=n(3n+/-1)/2 which makes p+q prime satisfies 2q > p.
3, 7, 13, 19, 23, 37, 43, 73, 103, 233, 359, 503
Offset: 1
Examples
For p=23, q=126. For p=503, q=590. More examples: p=3, q=2, p+q=5. p=7, q=12, p+q=19. p=13, q=40, p+q=53. p=19, q=12, p+q=31. p=23, q=126, p+q=149. p=37, q=22, p+q=59. p=43, q=40, p+q=83. p=73, q=40, p+q=113. p=103, q=70, p+q=173. p=233, q=126, p+q=359. p=359, q=210, p+q=569. p=503, q=590, p+q=1093. - _Michel Marcus_, Aug 21 2013
Links
- G. N. Watson, Math. Notes 2103. A Curious Property of the Prime Number 503, Math. Gaz. vol 33, no 306, Dec 1949, pp. 302-303.
Programs
-
PARI
isok(p) = my(nn = 1, ok = 0); until (ok, q = nn*(3*nn - 1)/2; if (isprime(p+q), ok = 1; if (2*q > p, return (q))); q = nn*(3*nn + 1)/2; if (isprime(p+q), ok = 1; if (2*q > p, return (q));); nn++;); 0 \\ Michel Marcus, Aug 21 2013
-
PARI
is(p)=my(n=1,t);while(!isprime(t=p+n*(3*n-1)/2)&&!isprime(t=p+n*(3*n+1)/2)&&2*t<=3*p,n++); 2*t>3*p && isprime(p) \\ Charles R Greathouse IV, Aug 21 2013
Extensions
a(10) = 233 inserted by Michel Marcus, Aug 21 2013
Comments