Paul S. Vanderveen has authored 2 sequences.
A332763
Numbers k such that 6*17^k + 1 is prime.
Original entry on oeis.org
0, 1, 5, 7, 19, 23, 67, 107, 400, 429, 617, 743, 1065, 7717, 12329, 14459, 22425, 114543, 221983, 237453
Offset: 1
-
Select[Range[0, 1000], PrimeQ[6*17^# + 1] &] (* Amiram Eldar, Feb 24 2020 *)
-
for(i=1,10000, if( ispseudoprime(6*17^i+1), print1(i, ", ")));
A290283
Primes p such that A215458(p) is prime.
Original entry on oeis.org
3, 5, 7, 11, 17, 19, 23, 101, 107, 109, 113, 163, 283, 311, 331, 347, 359, 701, 1153, 1597, 1621, 2063, 2437, 2909, 3319, 6011, 12829, 46147, 46471, 74219, 112297, 128411, 178693, 223759, 268841, 407821, 526763, 925391, 927763
Offset: 1
A215458(3) = 7, A215458(5) = 11, A215458 (7) = 71 are all primes, hence 3, 5, 7 are in this sequence.
-
h := proc(n) option remember; `if`(n=0,2,`if`(n=1,1,h(n-1)-2*h(n-2))) end:
select(n->isprime((2^n-h(n)+1)/2),select(isprime,[$1..1000])); # Peter Luschny, Jul 26 2017
-
Function[s, Keys@ KeySelect[s, AllTrue[{#, Lookup[s, #]}, PrimeQ] &]]@ MapIndexed[First[#2] - 1 -> #1 &, LinearRecurrence[{4, -7, 8, -4}, {0, 1, 4, 7}, 7000]] (* Michael De Vlieger, Jul 26 2017 *)
-
isprime(([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[0; 1; 4; 7])[1, 1])
Comments