A051254 Mills primes.
2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
Offset: 1
Examples
a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..8
- Chris K. Caldwell, Mills' Theorem - a generalization.
- Chris K. Caldwell and Yuanyou Chen, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
- Steven R. Finch, Mills' Constant. [Broken link]
- Steven R. Finch, Mills' Constant. [From the Wayback machine]
- Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, A Prime-Representing Constant, Amer. Math. Monthly, Vol. 126, No. 1 (2019), pp. 72-73; ResearchGate link, arXiv preprint, arXiv:2010.15882 [math.NT], 2020.
- James Grime and Brady Haran, Awesome Prime Number Constant, Numberphile video, 2013.
- Brian Hayes, Pumping the Primes, bit-player, Aug 19 2015.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- William H. Mills, A prime-representing function, Bull. Amer. Math. Soc., Vol. 53, No. 6 (1947), p. 604; Errata, ibid., Vol. 53, No 12 (1947), p. 1196.
- Simon Plouffe, The calculation of p(n) and pi(n), arXiv:2002.12137 [math.NT], 2020.
- László Tóth, A Variation on Mills-Like Prime-Representing Functions, arXiv:1801.08014 [math.NT], 2018.
- Juan L. Varona, A Couple of Transcendental Prime-Representing Constants, arXiv:2012.11750 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Mills' Prime.
- Eric Weisstein's World of Mathematics, Prime Formulas.
- Eric W. Weisstein, Table of n, a(n) for n = 1..13.
Crossrefs
Programs
-
Maple
floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
-
Mathematica
p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *) NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
-
PARI
a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
-
PARI
apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ M. F. Hasler, Sep 11 2024
Formula
a(1) = 2; a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006
Extensions
Edited by N. J. A. Sloane, May 05 2007
Comments