cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A224845 Integer lengths of the Mills primes A051254.

Original entry on oeis.org

1, 2, 4, 10, 29, 85, 254, 762, 2285, 6854, 20562, 61684, 185052, 555154, 1665461
Offset: 1

Views

Author

Eric W. Weisstein, Jul 22 2013

Keywords

Comments

Because of the precision of the known Mills' primes and PRPs, it is easy to safely assign decimal lengths of the Mills primes for yet undefined terms (at least another 20-30 terms; they are infinitesimally little offset from successive cubed values). Adding only two terms because these are currently known precisely. - Serge Batalov, Apr 30 2024

Examples

			The first few Mills primes are 2, 11, 1361, 2521008887, ... which have integer lengths (= number of decimal digits) of 1, 2, 4, 10, ....
		

Crossrefs

Cf. A051254 (Mills primes).
Cf. A108739 (b_n associated with Mills primes).

Extensions

a(14)-a(15) from Serge Batalov, Apr 30 2024

A051021 Decimal expansion of Mills's constant, assuming the Riemann Hypothesis is true.

Original entry on oeis.org

1, 3, 0, 6, 3, 7, 7, 8, 8, 3, 8, 6, 3, 0, 8, 0, 6, 9, 0, 4, 6, 8, 6, 1, 4, 4, 9, 2, 6, 0, 2, 6, 0, 5, 7, 1, 2, 9, 1, 6, 7, 8, 4, 5, 8, 5, 1, 5, 6, 7, 1, 3, 6, 4, 4, 3, 6, 8, 0, 5, 3, 7, 5, 9, 9, 6, 6, 4, 3, 4, 0, 5, 3, 7, 6, 6, 8, 2, 6, 5, 9, 8, 8, 2, 1, 5, 0, 1, 4, 0, 3, 7, 0, 1, 1, 9, 7, 3, 9, 5, 7, 0, 7, 2, 9
Offset: 1

Views

Author

Keywords

Comments

Not known to be rational or irrational. See Saito (2024) for a new result. - Charles R Greathouse IV, Jul 18 2013, Hugo Pfoertner, May 01 2024

Examples

			1.3063778838630806904686144926026057129167845851567136443680537599664340537668...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.

Crossrefs

Cf. A051254.

Programs

  • Mathematica
    RealDigits[ Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8), 10, 111][[1]] (* Robert G. Wilson v, Nov 14 2012 *)
  • PARI
    A051021_upto(N=99)=localprec(N+9);digits(10^N*sqrtn(A051254(N=logint(N,3)+2),3^N)\1) \\ M. F. Hasler, Sep 11 2024

Extensions

More terms from Robert G. Wilson v, Sep 08 2000
More terms from Tin Apato (tinapto(AT)yahoo.es), Dec 12 2007

A108739 Mills' constant A generates a sequence of primes via b(n)= floor(A^3^n). This sequence is a(n) = b(n+1)-b(n)^3.

Original entry on oeis.org

3, 30, 6, 80, 12, 450, 894, 3636, 70756, 97220, 66768, 300840, 1623568, 8436308
Offset: 1

Views

Author

Chris K. Caldwell, Jun 22 2005

Keywords

Comments

This allows larger terms of A051254 (which triple in digits each entry) to be given. Like A051254, currently requires Riemann Hypothesis to show sequence continues.
Currently a(11)=66768 generates only a probable prime number. - Arkadiusz Wesolowski, May 28 2011
Likewise a(12) and a(13) generate only a probable prime numbers, as well as being conditional on a(11) and a(12) being proved primes. Minimality of a(12)-a(13) is exhaustively tested. - Serge Batalov, Aug 06 2013
a(14) = 8436308 is found by Ryan Propper and Serge Batalov, Apr 29 2024, but a few remaining gaps below this value were being double-checked. The double-check is now complete (see GitHub link). - Ryan Propper and Serge Batalov, May 24 2024.

Examples

			The Mills' primes (given in A051254) are 2, 2^3+3 = 11, (2^3+3)^3+30 = 11^3+30 = 1361, ((2^3+3)^3+30)^3+6 = 1361^3+6 = 2521008887, etc. The terms added at each step yield this sequence. They are the least positive integers which added to the cube of the preceding prime yield again a prime, cf. formula. - _M. F. Hasler_, Jul 22 2013
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.

Crossrefs

Programs

  • Mathematica
    B[1] = 2; B[n_] := B[n] = NextPrime[B[n - 1]^3]; Table[B[n + 1] - B[n]^3, {n, 7}] (* Robert Price, Jun 09 2019 *)
  • PARI
    p=2; until(, np=nextprime(p^3); print1(np-p^3, ", "); p=np) \\ Jeppe Stig Nielsen, Apr 22 2020

Formula

b(1) = 2; b(n+1) = nextprime(b(n)^3); a(n) = b(n+1)-b(n)^3;

Extensions

a(9)-a(11) from Caldwell and Cheng, Aug 29 2005
Corrected by T. D. Noe, Sep 24 2008
a(12) (which generates a PRP) from Serge Batalov, Jul 19 2013
a(13) (which generates a PRP) from Serge Batalov, Aug 06 2013
a(14) (which generates a PRP) from Ryan Propper and Serge Batalov, May 24 2024

A338613 Numbers given by a(n) = 1 + floor(c^(n^1.5)) where c=2.2679962677... is the constant defined at A338837.

Original entry on oeis.org

2, 3, 11, 71, 701, 9467, 168599, 3860009, 111498091, 4002608003, 176359202639, 9437436701437, 607818993573569, 46744099128452807, 4262700354254812091, 458091929703695291747, 57691186909930154615407, 8471601990692484416847631, 1443868262009075144775972529
Offset: 0

Views

Author

Bernard Montaron, Nov 03 2020

Keywords

Comments

Assuming Cramer's conjecture on largest prime gaps, it can be proved that there exists at least one constant 'c' such that all a(n) are primes for n as large as required. The constant giving the smallest growth rate is c=2.2679962677067242473285532807253717745270422544...
This exponential sequence of prime numbers grows very slowly compared to Mills' sequence for which each new term has 3 times more digits than the previous one. More than 60 terms (all prime numbers) can be easily calculated for the sequence described here which is quite remarkable for an exponential sequence.
Algorithm to compute the smallest constant 'c' and the associated prime number sequence a(n).
0. n=0, a(0)=2, c=2, d=1.5
1. n=n+1
2. b=1+floor(c^(n^d))
3. p=smpr(b) smallest prime >= b
4. If p=b then a(n)=p, go to 1.
5. c=(p-1)^(1/n^d)
6. a(n)=p
7. k=1
8. b=1+floor(c^(k^d))
9. If b<>a(k) then p=smpr(b), n=k, go to 5.
10. If k
11. go to 1.
I propose the following generalization: find the function f(n) with f(0)=0 and f(x)>x for x>=2 such that there exists a suitable positive constant c(f) giving the increasing prime sequence a(n)=1+floor(c^f(n)) with the smallest possible growth rate. Since a(0)=2, c(f)>=2.

Crossrefs

Programs

  • PARI
    c(n=40, prec=100)={
      my(curprec=default(realprecision));
      default(realprecision, max(prec, curprec));
      my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
      for(j=1, n-1,
        b=1+floor(c^(j^d));
        until(ok,
          ok=1;
          p=smpr(b);
          listput(a,p,j+1);
          if(p!=b,
             c=(p-1)^(j^(-d));
             for(k=1,j-2,
                 b=1+floor(c^(k^d));
                 if(b!=a[k+1],
                    ok=0;
                    j=k;
                    break;
                   );
                );
            );
        );
      );
      default(realprecision, curprec);
      return(a);
    } \\ François Marques, Nov 12 2020

Formula

a(n) = 1 + floor(c^(n^1.5)) where c=2.2679962677...

A059784 a(n+1) = nextprime(a(n)^2). Smallest prime following the square of previous prime. Initial value = 2.

Original entry on oeis.org

2, 5, 29, 853, 727613, 529420677791, 280286254072681840639693, 78560384222095957698731679318817728959447134363
Offset: 1

Author

Labos Elemer, Feb 22 2001

Keywords

Crossrefs

Programs

Formula

a(n) = floor[1.5246999605380943599233635756884211622202236231...^(2^n)], similar to Mills Primes A051254. - Henry Bottomley, Oct 19 2003

Extensions

Changed offset to 1 to parallel other such sequences. - Robert G. Wilson v, Nov 15 2012

A063636 a(n) = floor((1287/545)^n).

Original entry on oeis.org

2, 5, 13, 31, 73, 173, 409, 967, 2283, 5392, 12735, 30073, 71017, 167706, 396032, 935217, 2208486, 5215270, 12315692, 29083113, 68678837, 162182870, 382989640, 904417737, 2135753445, 5043513182, 11910094433, 28125305569, 66417005997
Offset: 1

Author

Jud McCranie, Aug 10 2001

Keywords

Comments

The first eight terms are primes. Does there exist a number theta such that the floor of theta^n is always prime?

Examples

			(1287/545)^3 = 13.16879..., so a(3)=13.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers - a Computational Perspective, Springer, 2001, page 69, exercise 1.75.

Crossrefs

Programs

  • PARI
    { for (n=1, 300, write("b063636.txt", n, " ", 1287^n \ 545^n); ) } \\ Harry J. Smith, Aug 26 2009

A060449 Generalized Mills numbers: a(n) = floor(c^(b^n)) where c=4.4, b=1.179.

Original entry on oeis.org

5, 7, 11, 17, 29, 53, 109, 252, 679, 2184, 8650, 43828, 296913, 2832896, 40474353, 930818760, 37522518949, 2931502379404, 499688559138590, 213681340556825047, 270268120176240462240, 1227682581046707804164120
Offset: 1

Author

Jason Earls, Apr 07 2001

Keywords

Comments

First seven terms are primes.

Crossrefs

Programs

  • Maple
    Digits := 100; A060449 := n->4.4^(1.179^n);
  • PARI
    { default(realprecision, 2000); for (n=1, 44, write("b060449.txt", n, " ", floor(4.4^(1.179^n))); ) } \\ Harry J. Smith, Jul 05 2009

Extensions

More terms from James Sellers, Apr 11 2001
Offset changed from 0 to 1 by Harry J. Smith, Jul 05 2009

A060699 a(n) = floor(A^(C^n)), where A = 2.084551112207285611..., C = 1.221.

Original entry on oeis.org

2, 2, 3, 5, 7, 11, 19, 37, 83, 223, 739, 3181, 18911, 166679, 2376391, 60953117, 3202432763, 403823050201
Offset: 1

Author

Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Apr 20 2001

Keywords

Comments

Results from the application of Caldwell's Generalized Mills's Theorem. This value of A produces 18 primes. For 20 primes A must be adjusted to 2.084551112207285611.
The extension of the sequence is guaranteed by the Cramer conjecture. That is: If the needed change in Y(n) for obtaining the next prime (superior or inferior) is as maximum = (log Y(n))^2/2, then the effect on Y(n-1) is less than K*C^(2n-1)*Y(n-1)/Y(n). K = (1/2)*(log A)^2 = 0.269784 This value diminishes with n. Example: For n = 23, a change in Y(23) by 2630 only changes Y(22) by 0.0043. Jens Kruse Anderson with A = 2.084551112197624209091521123 calculated Y(n) = floor(A^(C^n)) from n = 1 to n = 3, obtaining 22 different primes. - Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009

Examples

			a(10) = 223 because 2.0845511122073^(1.221^10)= 223.58376...
With the value of A received from Jens K. Andersen we have: For n = 23, a(23) = 313 990 383 602 932 052 632 553 770 22009. - Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009
		

References

  • Jens Kruse Andersen. Personal communication (Feb 2009). [Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009]
  • O. Ore, Theory of Numbers and Its History. McGraw Hill, 1948.

Crossrefs

Formula

a(n) = floor(A^(C^n)); A = 2.084551112... ; C = 1.221. - Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009

A118910 a(1) = 2; a(n) is greatest prime < a(n-1)^3.

Original entry on oeis.org

2, 7, 337, 38272739, 56062005704198360319209, 176199995814327287356671209104585864397055039072110696028654438846269
Offset: 1

Author

Jonathan Vos Post, May 05 2006

Keywords

Comments

Exponent 3 analog of A059785.
Obverse of this is A051254.

Examples

			a(5) = 62343227157465615355481 = a(4)^3 - 32 = 39651817^3 - 32 and there is no k < 32 such that 39651817^3 - k is prime.
		

Programs

  • Mathematica
    a=2; Join[{2}, Table[a=a^3; While[ !PrimeQ[a], a=a-1]; a, {5}]] (* T. D. Noe, Nov 15 2006 *)

Extensions

Corrected by T. D. Noe, Nov 15 2006

A191357 Floor(A^(C^n)), where A = 32.76 and C = 1.33.

Original entry on oeis.org

103, 479, 3673, 55147, 2024063, 243937297, 142915724779, 685893080269745, 53978528420922581864, 175329092084368391071206608, 80227969100540338877503013472650510, 26469961649988241699181245714190498215773679043
Offset: 1

Author

Arkadiusz Wesolowski, May 31 2011

Keywords

Comments

First seven terms are primes.

Examples

			a(2) = 479 because 32.76^(1.33^2) = 479.1724192479....
		

Crossrefs

Programs

  • PARI
    default(realprecision, 100); for(n=1, 12, print1(floor(32.76^(1.33^n)), ", ")); \\ Arkadiusz Wesolowski, Jul 18 2011

Formula

a(n) = floor(32.76^(1.33^n)).
Showing 1-10 of 16 results. Next