cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A051254 Mills primes.

Original entry on oeis.org

2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
Offset: 1

Views

Author

Keywords

Comments

Mills showed that there is a number A > 1 but not an integer, such that floor( A^(3^n) ) is a prime for all n = 1, 2, 3, ... A is approximately 1.306377883863... (see A051021).
a(1) = 2 and (for n > 1) a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006, corrected by M. F. Hasler, Sep 11 2024
The name refers to the American mathematician William Harold Mills (1921-2007). - Amiram Eldar, Jun 23 2021

Examples

			a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.

Crossrefs

Cf. A224845 (integer lengths of Mills primes).
Cf. A108739 (sequence of offsets b_n associated with Mills primes).
Cf. A051021 (decimal expansion of Mills constant).

Programs

  • Maple
    floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
  • Mathematica
    p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *)
    NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
  • PARI
    a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
    
  • PARI
    apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ M. F. Hasler, Sep 11 2024

Formula

a(1) = 2; a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006

Extensions

Edited by N. J. A. Sloane, May 05 2007

A108739 Mills' constant A generates a sequence of primes via b(n)= floor(A^3^n). This sequence is a(n) = b(n+1)-b(n)^3.

Original entry on oeis.org

3, 30, 6, 80, 12, 450, 894, 3636, 70756, 97220, 66768, 300840, 1623568, 8436308
Offset: 1

Views

Author

Chris K. Caldwell, Jun 22 2005

Keywords

Comments

This allows larger terms of A051254 (which triple in digits each entry) to be given. Like A051254, currently requires Riemann Hypothesis to show sequence continues.
Currently a(11)=66768 generates only a probable prime number. - Arkadiusz Wesolowski, May 28 2011
Likewise a(12) and a(13) generate only a probable prime numbers, as well as being conditional on a(11) and a(12) being proved primes. Minimality of a(12)-a(13) is exhaustively tested. - Serge Batalov, Aug 06 2013
a(14) = 8436308 is found by Ryan Propper and Serge Batalov, Apr 29 2024, but a few remaining gaps below this value were being double-checked. The double-check is now complete (see GitHub link). - Ryan Propper and Serge Batalov, May 24 2024.

Examples

			The Mills' primes (given in A051254) are 2, 2^3+3 = 11, (2^3+3)^3+30 = 11^3+30 = 1361, ((2^3+3)^3+30)^3+6 = 1361^3+6 = 2521008887, etc. The terms added at each step yield this sequence. They are the least positive integers which added to the cube of the preceding prime yield again a prime, cf. formula. - _M. F. Hasler_, Jul 22 2013
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.

Crossrefs

Programs

  • Mathematica
    B[1] = 2; B[n_] := B[n] = NextPrime[B[n - 1]^3]; Table[B[n + 1] - B[n]^3, {n, 7}] (* Robert Price, Jun 09 2019 *)
  • PARI
    p=2; until(, np=nextprime(p^3); print1(np-p^3, ", "); p=np) \\ Jeppe Stig Nielsen, Apr 22 2020

Formula

b(1) = 2; b(n+1) = nextprime(b(n)^3); a(n) = b(n+1)-b(n)^3;

Extensions

a(9)-a(11) from Caldwell and Cheng, Aug 29 2005
Corrected by T. D. Noe, Sep 24 2008
a(12) (which generates a PRP) from Serge Batalov, Jul 19 2013
a(13) (which generates a PRP) from Serge Batalov, Aug 06 2013
a(14) (which generates a PRP) from Ryan Propper and Serge Batalov, May 24 2024

A338613 Numbers given by a(n) = 1 + floor(c^(n^1.5)) where c=2.2679962677... is the constant defined at A338837.

Original entry on oeis.org

2, 3, 11, 71, 701, 9467, 168599, 3860009, 111498091, 4002608003, 176359202639, 9437436701437, 607818993573569, 46744099128452807, 4262700354254812091, 458091929703695291747, 57691186909930154615407, 8471601990692484416847631, 1443868262009075144775972529
Offset: 0

Views

Author

Bernard Montaron, Nov 03 2020

Keywords

Comments

Assuming Cramer's conjecture on largest prime gaps, it can be proved that there exists at least one constant 'c' such that all a(n) are primes for n as large as required. The constant giving the smallest growth rate is c=2.2679962677067242473285532807253717745270422544...
This exponential sequence of prime numbers grows very slowly compared to Mills' sequence for which each new term has 3 times more digits than the previous one. More than 60 terms (all prime numbers) can be easily calculated for the sequence described here which is quite remarkable for an exponential sequence.
Algorithm to compute the smallest constant 'c' and the associated prime number sequence a(n).
0. n=0, a(0)=2, c=2, d=1.5
1. n=n+1
2. b=1+floor(c^(n^d))
3. p=smpr(b) smallest prime >= b
4. If p=b then a(n)=p, go to 1.
5. c=(p-1)^(1/n^d)
6. a(n)=p
7. k=1
8. b=1+floor(c^(k^d))
9. If b<>a(k) then p=smpr(b), n=k, go to 5.
10. If k
11. go to 1.
I propose the following generalization: find the function f(n) with f(0)=0 and f(x)>x for x>=2 such that there exists a suitable positive constant c(f) giving the increasing prime sequence a(n)=1+floor(c^f(n)) with the smallest possible growth rate. Since a(0)=2, c(f)>=2.

Crossrefs

Programs

  • PARI
    c(n=40, prec=100)={
      my(curprec=default(realprecision));
      default(realprecision, max(prec, curprec));
      my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
      for(j=1, n-1,
        b=1+floor(c^(j^d));
        until(ok,
          ok=1;
          p=smpr(b);
          listput(a,p,j+1);
          if(p!=b,
             c=(p-1)^(j^(-d));
             for(k=1,j-2,
                 b=1+floor(c^(k^d));
                 if(b!=a[k+1],
                    ok=0;
                    j=k;
                    break;
                   );
                );
            );
        );
      );
      default(realprecision, curprec);
      return(a);
    } \\ François Marques, Nov 12 2020

Formula

a(n) = 1 + floor(c^(n^1.5)) where c=2.2679962677...

A060449 Generalized Mills numbers: a(n) = floor(c^(b^n)) where c=4.4, b=1.179.

Original entry on oeis.org

5, 7, 11, 17, 29, 53, 109, 252, 679, 2184, 8650, 43828, 296913, 2832896, 40474353, 930818760, 37522518949, 2931502379404, 499688559138590, 213681340556825047, 270268120176240462240, 1227682581046707804164120
Offset: 1

Author

Jason Earls, Apr 07 2001

Keywords

Comments

First seven terms are primes.

Crossrefs

Programs

  • Maple
    Digits := 100; A060449 := n->4.4^(1.179^n);
  • PARI
    { default(realprecision, 2000); for (n=1, 44, write("b060449.txt", n, " ", floor(4.4^(1.179^n))); ) } \\ Harry J. Smith, Jul 05 2009

Extensions

More terms from James Sellers, Apr 11 2001
Offset changed from 0 to 1 by Harry J. Smith, Jul 05 2009

A060699 a(n) = floor(A^(C^n)), where A = 2.084551112207285611..., C = 1.221.

Original entry on oeis.org

2, 2, 3, 5, 7, 11, 19, 37, 83, 223, 739, 3181, 18911, 166679, 2376391, 60953117, 3202432763, 403823050201
Offset: 1

Author

Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Apr 20 2001

Keywords

Comments

Results from the application of Caldwell's Generalized Mills's Theorem. This value of A produces 18 primes. For 20 primes A must be adjusted to 2.084551112207285611.
The extension of the sequence is guaranteed by the Cramer conjecture. That is: If the needed change in Y(n) for obtaining the next prime (superior or inferior) is as maximum = (log Y(n))^2/2, then the effect on Y(n-1) is less than K*C^(2n-1)*Y(n-1)/Y(n). K = (1/2)*(log A)^2 = 0.269784 This value diminishes with n. Example: For n = 23, a change in Y(23) by 2630 only changes Y(22) by 0.0043. Jens Kruse Anderson with A = 2.084551112197624209091521123 calculated Y(n) = floor(A^(C^n)) from n = 1 to n = 3, obtaining 22 different primes. - Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009

Examples

			a(10) = 223 because 2.0845511122073^(1.221^10)= 223.58376...
With the value of A received from Jens K. Andersen we have: For n = 23, a(23) = 313 990 383 602 932 052 632 553 770 22009. - Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009
		

References

  • Jens Kruse Andersen. Personal communication (Feb 2009). [Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009]
  • O. Ore, Theory of Numbers and Its History. McGraw Hill, 1948.

Crossrefs

Formula

a(n) = floor(A^(C^n)); A = 2.084551112... ; C = 1.221. - Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009

A117739 Decimal expansion of the largest C_0 = 1.2209864... such that for C < C_0 and A < 2 the sequence a(n) = floor[A^(C^n)] can't contain only prime terms.

Original entry on oeis.org

1, 2, 2, 0, 9, 8, 6, 4, 0, 7, 1, 3, 9, 5, 5, 0, 2, 4, 4, 2, 7, 3, 7, 0, 1, 4, 5, 1, 8, 8, 3, 5, 5, 8, 1, 4, 1, 6, 4, 6, 2, 4, 7, 5, 4, 0, 6, 0, 2, 9, 3, 8, 4, 4, 4, 7, 9, 1, 9, 7, 2, 9, 2, 5, 3, 7, 5, 1, 0, 3, 8, 7, 9, 7, 4, 6, 0, 0, 9, 1, 9, 1, 0, 3, 4, 2
Offset: 1

Author

Martin Raab, May 04 2006

Keywords

Comments

It is not proved that for C > C_0 the mentioned infinite sequence of primes actually exists. However, heuristics show that A243358 could be infinite (the decimal expansion of corresponding A value is A243370).

Crossrefs

Cf. A243358 (primes), A243370 (value of A), A051021 (Mills' constant)

Formula

C_0 can be estimated as (logP/log84)^(1/k), where P is k+10th term of A243358.

Extensions

Terms after a(18) from Andrey V. Kulsha, Jun 03 2014

A112597 Decimal expansion of x, where x is the smallest number for which floor(x^(2^y)) is prime for every y > 0 (assuming the truth of Legendre's conjecture).

Original entry on oeis.org

1, 5, 2, 4, 6, 9, 9, 9, 6, 0, 5, 3, 8, 0, 9, 4, 3, 5, 9, 9, 2, 3, 3, 6, 3, 5, 7, 5, 6, 8, 8, 4, 2, 1, 1, 6, 2, 2, 2, 0, 2, 2, 3, 6, 2, 3, 1, 9, 9, 7, 7, 1, 2, 1, 9, 8, 4, 5, 7, 2, 2, 2, 6, 5, 6, 8, 4, 1, 6, 3, 0, 4, 8, 2, 0, 2, 3, 5, 7, 2, 3, 2, 3, 7, 0, 4, 8, 2, 3, 8, 3, 0, 4, 8, 6, 0, 9, 5, 7, 9, 5, 9, 9, 7, 6
Offset: 1

Author

Martin Raab, Dec 21 2005

Keywords

Examples

			1.524699960538...
Repeated squaring gives the primes 2, 5, 29, 853, 727613, 529420677791, 280286254072681840639693, ... (A059784).
		

Crossrefs

Cf. A059784, A051021, decimal expansion of Mills' constant where floor(x^(3^y)) is prime for every y > 0.

Extensions

Name clarified by Thomas Scheuerle, Mar 28 2025

A079614 Decimal expansion of Bertrand's constant.

Original entry on oeis.org

1, 2, 5, 1, 6, 4, 7, 5, 9, 7, 7, 9, 0, 4, 6, 3, 0, 1, 7, 5, 9, 4, 4, 3, 2, 0, 5, 3, 6, 2, 3, 3, 4, 6, 9, 6, 9
Offset: 1

Author

Benoit Cloitre, Jan 29 2003

Keywords

Comments

From Bertrand's postulate (i.e., there is always a prime p in the range n < p < 2n) one can show there is a constant b such that floor(2^b), floor(2^2^b), ..., floor(2^2^2...^b), ... are all primes.
This result is due to Wright (1951), so Bertrand's constant might be better called Wright's constant, by analogy with Mills's constant A051021. - Jonathan Sondow, Aug 02 2013

Examples

			2^(2^(2^1.251647597790463017594432053623)) is approximately 37.0000000000944728917062132870071 and A051501(3)=37.
		

References

  • S. Finch, Mathematical Constants, Cambridge Univ. Press, 2003; see section 2.13 Mills's constant.

Crossrefs

Formula

1.251647597790463017594432053623346969...

Extensions

More digits (from the Prime Curios page) added by Frank Ellermann, Sep 19 2011
a(16)-a(37) from Charles R Greathouse IV, Sep 20 2011
Definition clarified by Jonathan Sondow, Aug 02 2013

A191357 Floor(A^(C^n)), where A = 32.76 and C = 1.33.

Original entry on oeis.org

103, 479, 3673, 55147, 2024063, 243937297, 142915724779, 685893080269745, 53978528420922581864, 175329092084368391071206608, 80227969100540338877503013472650510, 26469961649988241699181245714190498215773679043
Offset: 1

Author

Arkadiusz Wesolowski, May 31 2011

Keywords

Comments

First seven terms are primes.

Examples

			a(2) = 479 because 32.76^(1.33^2) = 479.1724192479....
		

Crossrefs

Programs

  • PARI
    default(realprecision, 100); for(n=1, 12, print1(floor(32.76^(1.33^n)), ", ")); \\ Arkadiusz Wesolowski, Jul 18 2011

Formula

a(n) = floor(32.76^(1.33^n)).

A219177 Decimal expansion of what appears to be the smallest possible C for which the nearest integer to C^2^n is always prime and starts with 2.

Original entry on oeis.org

1, 2, 7, 2, 0, 1, 9, 6, 3, 3, 1, 9, 2, 1, 9, 3, 4, 9, 5, 8, 6, 9, 7, 3, 5, 3, 2, 0, 9, 1, 1, 9, 2, 8, 8, 3, 7, 6, 3, 7, 5, 6, 3, 0, 8, 2, 6, 9, 9, 6, 4, 7, 6, 4, 8, 1, 3, 2, 2, 5, 8, 0, 4, 1, 5, 4, 8, 7, 5, 3, 2, 8, 1, 4, 2, 6, 4, 3, 3, 7, 5, 6, 4, 0, 7, 3, 8, 4, 8, 8, 1, 5, 0, 4, 5, 1, 8, 7, 5, 4, 0, 7, 4, 0, 2, 8
Offset: 1

Author

Robert G. Wilson v, Nov 15 2012

Keywords

Comments

The square of this constant, C^2 = 1.6180339472264..., is very close to the Golden Ratio Phi (A001622).
This constant is about 3% less than Mills's constant, 1.306377883863..., (A051021).
Since there is always a prime between an integer and its square, this constant should satisfy the same criteria as does Mills's constant (A051021).
This constant, C, produces A059785.

Examples

			=1.2720196331921934958697353209119288376375630826996476481322580415...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Nest[ NextPrime[#^2, -1] &, 2, 8]^(2^-9), 10, 111][[1]]
Showing 1-10 of 15 results. Next