A063636
a(n) = floor((1287/545)^n).
Original entry on oeis.org
2, 5, 13, 31, 73, 173, 409, 967, 2283, 5392, 12735, 30073, 71017, 167706, 396032, 935217, 2208486, 5215270, 12315692, 29083113, 68678837, 162182870, 382989640, 904417737, 2135753445, 5043513182, 11910094433, 28125305569, 66417005997
Offset: 1
(1287/545)^3 = 13.16879..., so a(3)=13.
- Richard Crandall and Carl Pomerance, Prime Numbers - a Computational Perspective, Springer, 2001, page 69, exercise 1.75.
-
{ for (n=1, 300, write("b063636.txt", n, " ", 1287^n \ 545^n); ) } \\ Harry J. Smith, Aug 26 2009
A060699
a(n) = floor(A^(C^n)), where A = 2.084551112207285611..., C = 1.221.
Original entry on oeis.org
2, 2, 3, 5, 7, 11, 19, 37, 83, 223, 739, 3181, 18911, 166679, 2376391, 60953117, 3202432763, 403823050201
Offset: 1
Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Apr 20 2001
a(10) = 223 because 2.0845511122073^(1.221^10)= 223.58376...
With the value of A received from Jens K. Andersen we have: For n = 23, a(23) = 313 990 383 602 932 052 632 553 770 22009. - Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009
- Jens Kruse Andersen. Personal communication (Feb 2009). [Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Feb 10 2009]
- O. Ore, Theory of Numbers and Its History. McGraw Hill, 1948.
A191357
Floor(A^(C^n)), where A = 32.76 and C = 1.33.
Original entry on oeis.org
103, 479, 3673, 55147, 2024063, 243937297, 142915724779, 685893080269745, 53978528420922581864, 175329092084368391071206608, 80227969100540338877503013472650510, 26469961649988241699181245714190498215773679043
Offset: 1
a(2) = 479 because 32.76^(1.33^2) = 479.1724192479....
-
default(realprecision, 100); for(n=1, 12, print1(floor(32.76^(1.33^n)), ", ")); \\ Arkadiusz Wesolowski, Jul 18 2011
Showing 1-3 of 3 results.
Comments