cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A212210 Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 1, 1 <= k <= n, where pi() = A000720().

Original entry on oeis.org

-1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 1, 2, -1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 2, 2, 0, 0, 1, 0, 1, 1, 2, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x)+pi(y) >= pi(x+y) for 1 < y <= x.
A006093 gives row numbers of rows containing at least one negative term. [Reinhard Zumkeller, May 05 2012]

Examples

			Triangle begins:
  -1
  -1 0
   0 0 1
  -1 0 0 0
   0 0 1 1 2
  -1 0 1 1 1 1
   0 1 2 1 2 1 2
   0 1 1 1 1 1 2 2
   0 0 1 0 1 1 2 1 1
  -1 0 0 0 1 1 1 1 0 0
  ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Programs

  • Haskell
    import Data.List (inits, tails)
    a212210 n k = a212210_tabl !! (n-1) !! (k-1)
    a212210_row n = a212210_tabl !! (n-1)
    a212210_tabl = f $ tail $ zip (inits pis) (tails pis) where
       f ((xs,ys) : zss) = (zipWith (-) (map (+ last xs) (xs)) ys) : f zss
       pis = a000720_list
    -- Reinhard Zumkeller, May 04 2012
  • Mathematica
    t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)

A212213 Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 2

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.

Examples

			Array begins:
  0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ...
  0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, ...
  0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, ...
  0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, ...
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, ...
  1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, ...
  ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n - k + 2, k], {n, 0, 15}, {k, 2, n}] // Flatten (* Jean-François Alcover, Dec 31 2012 *)

A047886 Triangle read by rows: T(n,k) = pi(n+k) - pi(n) - pi(k), where pi() = A000720 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, -2, 0, 1, 0, -1, -1, -1, -1, 0, 0, -1, -2, -1, -2, -1, -2, 0, 0, -1, -1, -1, -1, -1, -2, -2, 0, 0, 0, -1, 0, -1, -1, -2, -1, -1, 0, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -2, -1, -2, -1, -1, -1, -2, 0, 1, 0, -1
Offset: 0

Views

Author

Keywords

Comments

T(n,0)=0; for n > 0: T(n,1)=A010051(n); T(n,n)=-A060208(n). - Reinhard Zumkeller, Apr 15 2008
A212210-A212213 are the preferred versions of this array.

Examples

			Triangle begins
  0;
  0,  1;
  0,  1,  0;
  0,  0,  0, -1;
  0,  1,  0,  0,  0;
  0,  0,  0, -1, -1, -2;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[PrimePi[n+k]-PrimePi[n]-PrimePi[k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Feb 22 2012 *)

Extensions

More terms from James Sellers, Dec 22 1999

A212212 Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720.

Original entry on oeis.org

-1, -1, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 2, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 0, -1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.

Examples

			Array begins:
  -1, -1,  0, -1,  0, -1,  0,  0,  0, -1,  0, -1, ...
  -1,  0,  0,  0,  0,  0,  1,  1,  0,  0,  0,  0, ...
   0,  0,  1,  0,  1,  1,  2,  1,  1,  0,  1,  1, ...
  -1,  0,  0,  0,  1,  1,  1,  1,  0,  0,  1,  1, ...
   0,  0,  1,  1,  2,  1,  2,  1,  1,  1,  2,  1, ...
  -1,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   0,  1,  2,  1,  2,  1,  2,  2,  2,  1,  2,  1, ...
   0,  1,  1,  1,  1,  1,  2,  2,  1,  1,  1,  1, ...
   ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Cf. A000720, A212210-A212213, A060208, A047885, A047886. First row and column are -A010051.

Programs

  • Mathematica
    a[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[a[n-k, k], {n, 1, 15}, {k, 1, n-1}]] (* Jean-François Alcover, Jul 18 2012 *)

A212211 Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 2, 2 <= k <= n, where pi() = A000720().

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3
Offset: 2

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.

Examples

			Triangle begins:
  0,
  0, 1,
  0, 0, 0,
  0, 1, 1, 2,
  0, 1, 1, 1, 1,
  1, 2, 1, 2, 1, 2,
  1, 1, 1, 1, 1, 2, 2,
  0, 1, 0, 1, 1, 2, 1, 1,
  0, 0, 0, 1, 1, 1, 1, 0, 0,
  0, 1, 1, 2, 1, 2, 1, 1, 1, 2,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  ...
		

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.

Crossrefs

Programs

  • Haskell
    a212211 n k = a212211_tabl !! (n-2) !! (k-2)
    a212211_tabl = map a212211_row [2..]
    a212211_row n = zipWith (-)
       (map (+ a000720 n) $ take (n - 1) $ tail a000720_list)
       (drop (n + 1) a000720_list)
    -- Reinhard Zumkeller, May 04 2012
  • Mathematica
    t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[t[n, k], {n, 2, 13}, {k, 2, n}]] (* Jean-François Alcover, May 21 2012 *)
Showing 1-5 of 5 results.