A212219
Number of representations of n as a sum of products of distinct pairs of positive integers >=2, n = Sum_{k=1..m} i_k*j_k with 2<=i_k<=j_k, i_k
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 3, 0, 3, 1, 3, 2, 3, 1, 5, 3, 3, 2, 6, 4, 5, 3, 6, 6, 7, 2, 11, 5, 8, 6, 12, 7, 10, 8, 12, 11, 14, 8, 17, 11, 16, 13, 19, 13, 23, 15, 22, 17, 25, 18, 29, 24, 24, 23, 36, 25, 34, 25, 42, 34, 39, 30, 47, 40, 48, 37
Offset: 0
Keywords
Examples
a(0) = 1: 0 = the empty sum. a(4) = 1: 4 = 2*2. a(12) = 2: 12 = 2*6 = 3*4. a(13) = 1: 13 = 2*2 + 3*3. a(20) = 3: 20 = 2*2 + 4*4 = 2*10 = 4*5. a(23) = 1: 23 = 2*4 + 3*5. a(31) = 3: 31 = 2*5 + 3*7 = 2*3 + 5*5 = 2*2 + 3*9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, m, i, j) option remember; `if`(n=0, 1, `if`(m<4, 0, b(n, m-1, i, j) +`if`(m>n, 0, add(b(n-m, m-1, min(i, k-1), min(j, m/k-1)), k=select(x-> is(x>1 and x<=min(sqrt(m), i) and m<=j*x), divisors(m)))))) end: a:= n-> b(n$4): seq(a(n), n=0..30);
-
Mathematica
b[n_, m_, i_, j_] := b[n, m, i, j] = If[n == 0, 1, If[m<4, 0, b[n, m-1, i, j] + If[m>n, 0, Sum[b[n-m, m-1, Min[i, k-1], Min[j, m/k-1]], {k, Select[Divisors[m], #>1 && # <= Min[Sqrt[m], i] && m <= j*# &]}]]]]; a[n_] := b[n, n, n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 09 2014, after Alois P. Heinz *)