cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212221 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 12, 6, 0, 0, 1, 30, 78, 10, 0, 0, 1, 66, 474, 340, 15, 0, 0, 1, 138, 2238, 4780, 1095, 21, 0, 0, 1, 282, 9546, 46420, 32955, 2856, 28, 0, 0, 1, 570, 38958, 385660, 617775, 168546, 6412, 36
Offset: 1

Views

Author

Alois P. Heinz, May 06 2012

Keywords

Comments

The complete tripartite graph K_(n,n,n) has 3*n vertices and 3*n^2 = A033428(n) edges; see A212220 for example. The chromatic polynomial of K_(n,n,n) has 3*n+1 = A016777(n) coefficients.

Examples

			Square array A(n,k) begins:
   0,    0,     0,      0,       0,         0,          0, ...
   0,    0,     0,      0,       0,         0,          0, ...
   1,    1,     1,      1,       1,         1,          1, ...
   3,   12,    30,     66,     138,       282,        570, ...
   6,   78,   474,   2238,    9546,     38958,     155994, ...
  10,  340,  4780,  46420,  385660,   2995540,   22666780, ...
  15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...
		

Crossrefs

Rows 1+2,3-4 give: A000004, A000012, A089143(n-1) = 1/2*A182464(n-2) = 1/3*A182467(n-2).
Columns 1-2 give: A000217(n-2), 1/(2*n)*A115400(n).

Programs

  • Maple
    P:= proc(n) option remember;
          unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m)
           *mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q)
        end:
    A:= (n, k)-> P(k)(n)/(2*n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

Formula

A(n,k) = 1/(2*n) * Sum_{j,m=1..k} S2(k,j) * S2(k,m) * (n-j-m)^k * Product_{i=0..j+m-1} (n-i) with S2 = A008277.
A(n,n) = A282247(n).