A212221 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).
0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 12, 6, 0, 0, 1, 30, 78, 10, 0, 0, 1, 66, 474, 340, 15, 0, 0, 1, 138, 2238, 4780, 1095, 21, 0, 0, 1, 282, 9546, 46420, 32955, 2856, 28, 0, 0, 1, 570, 38958, 385660, 617775, 168546, 6412, 36
Offset: 1
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, ... 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, ... 3, 12, 30, 66, 138, 282, 570, ... 6, 78, 474, 2238, 9546, 38958, 155994, ... 10, 340, 4780, 46420, 385660, 2995540, 22666780, ... 15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..100, flattened
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Wikipedia, Chromatic Polynomial
Crossrefs
Programs
-
Maple
P:= proc(n) option remember; unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m) *mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q) end: A:= (n, k)-> P(k)(n)/(2*n): seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
Comments