cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212256 Number of (w,x,y,z) with all terms in {1,...,n} and 4/w = 1/x + 1/y + 1/z + 1/n.

Original entry on oeis.org

0, 1, 1, 4, 13, 1, 22, 1, 13, 10, 22, 1, 61, 1, 18, 102, 13, 1, 82, 1, 156, 79, 1, 1, 184, 1, 1, 10, 183, 1, 297, 1, 13, 105, 1, 181, 298, 1, 1, 16, 285, 1, 378, 1, 64, 405, 1, 1, 358, 1, 37, 13, 96, 1, 163, 130, 402, 31, 1, 1, 944
Offset: 0

Views

Author

Clark Kimberling, May 15 2012

Keywords

Comments

w = harmonic mean of {x,y,z,n}. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[4/w == 1/x + 1/y + 1/z + 1/n, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 60]]  (*  A212256 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
  • PARI
    A212256(n) = sum(w=1,n, sum(x=1,n, sum(y=1,n, sum(z=1,n, (4/w)==((1/x)+(1/y)+(1/z)+(1/n)))))); \\ (Is there any significantly faster program?) - Antti Karttunen, Feb 15 2023