cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212303 a(n) = n!/([(n-1)/2]!*[(n+1)/2]!) for n>0, a(0)=0, and where [ ] = floor.

Original entry on oeis.org

0, 1, 2, 3, 12, 10, 60, 35, 280, 126, 1260, 462, 5544, 1716, 24024, 6435, 102960, 24310, 437580, 92378, 1847560, 352716, 7759752, 1352078, 32449872, 5200300, 135207800, 20058300, 561632400, 77558760, 2326762800, 300540195, 9617286240, 1166803110, 39671305740
Offset: 0

Views

Author

Peter Luschny, Oct 24 2013

Keywords

Comments

a(n) + A056040(n) = A189911(n), the row sums of the extended Catalan triangle A189231.

Crossrefs

Programs

  • Maple
    A212303 := proc(n) if n mod 2 = 0 then n*binomial(n, iquo(n,2))/2 else binomial(n+1, iquo(n,2)+1)/2 fi end: seq(A212303(i), i=0..36);
  • Mathematica
    a[n_?EvenQ] := n*Binomial[n, n/2]/2; a[n_?OddQ] := Binomial[n+1, Quotient[n, 2]+1]/2; Table[a[n], {n, 0, 36}]  (* Jean-François Alcover, Feb 05 2014 *)
    nxt[{n_,a_}]:={n+1,If[OddQ[n],a(n+1),(4a(n+1))/(n(n+2))]}; Join[{0}, Transpose[ NestList[ nxt,{1,1},40]][[2]]] (* Harvey P. Dale, Dec 20 2014 *)
  • Sage
    def A212303():
        yield 0
        r, n = 1, 1
        while True:
            yield r
            n += 1
            r *= n if is_even(n) else 4*n/((n-1)*(n+1))
    a = A212303(); [next(a) for i in range(36)]

Formula

E.g.f.: (1+x)*BesselI(1, 2*x).
O.g.f.: -((4*x^2-1)^(3/2)+I-(4*I)*x^2+(4*I)*x^3)/(2*x*(4*x^2-1)^(3/2)).
Recurrence: a(n) = n if n < 2 else a(n) = a(n-1)*n if n is even else a(n-1)*n*4/((n-1)*(n+1)).
a(2*n) = n*C(2*n, n) (A005430); a(2*n+1) = C(2*n+1, n+1) (A001700).
a(n) = n$*floor((n+1)/2)^((-1)^n), where n$ is the swinging factorial A056040.
a(n) = Sum_{k=0..n} A189231(n, 2*k+1).
Sum_{n>=1} 1/a(n) = 2/3 + (7/27)*sqrt(3)*Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2/3 + Pi/(9*sqrt(3)). - Amiram Eldar, Aug 20 2022