cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212304 Primes of the form prime(n)^2 + n.

Original entry on oeis.org

5, 11, 53, 1381, 3739, 6263, 12799, 32803, 57173, 177323, 187573, 491527, 674183, 1067263, 1125899, 1142941, 1230067, 1352761, 1471567, 1745257, 1885349, 2283361, 2563453, 2779151, 3893027, 4364237, 5508757, 6933071, 7513481, 7790087, 8048981, 9370159, 11499359
Offset: 1

Views

Author

K. D. Bajpai, Oct 24 2013

Keywords

Examples

			a(3) = 53 :  prime(4)^2 + 4 = 7^2 + 4 = 49 + 4 = 53 which is prime.
a(4) = 1381 :  prime(12)^2 + 12 = 37^2 + 12 = 1369 + 12 = 1381 which is prime.
		

Crossrefs

Cf. A000040 (prime numbers).
Cf. A184935 (primes: k^2 + prime(k)).
Cf. A188831 (primes: k^2 - prime(k)).
Cf. A229203 (primes: k^3 - prime(k)).

Programs

  • Maple
    with(numtheory):KD := proc() local a; a:= (ithprime(k)^2+k); if isprime(a) then RETURN (a); fi; end: seq(KD(),k=1..1000);
  • Mathematica
    Select[Table[Prime[k]^2 + k, {k, 1000}], PrimeQ]
  • PARI
    for(k=1, 10^5, if(ispseudoprime(KD=((prime(k)^2+k))), print1(KD", ")));