A212318 Expansion of phi(q^2)^2 / (phi(-q) * phi(q^4)) in powers of q where phi() is a Ramanujan theta function.
1, 2, 8, 16, 32, 60, 96, 160, 256, 394, 624, 944, 1408, 2092, 3008, 4320, 6144, 8612, 12072, 16720, 22976, 31424, 42528, 57312, 76800, 102254, 135728, 179104, 235264, 307852, 400704, 519808, 671744, 864672, 1109904, 1419456, 1809568, 2300284, 2914272, 3682400
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 8*q^2 + 16*q^3 + 32*q^4 + 60*q^5 + 96*q^6 + 160*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2]^2 / (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^4]), {q, 0, n}]
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^12 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^2 + A)^3 * eta(x^8 + A)^9), n))}
Formula
Expansion of chi(q^2)^5 / (chi(-q) * chi(q^4))^2 in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q^4)^12 * eta(q^16)^2 / (eta(q)^2 * eta(q^2)^3 * eta(q^8)^9) in powers of q.
Euler transform of period 16 sequence [ 2, 5, 2, -7, 2, 5, 2, 2, 2, 5, 2, -7, 2, 5, 2, 0, ...].
a(n) ~ exp(sqrt(n)*Pi)/(4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
Comments