cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212318 Expansion of phi(q^2)^2 / (phi(-q) * phi(q^4)) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 8, 16, 32, 60, 96, 160, 256, 394, 624, 944, 1408, 2092, 3008, 4320, 6144, 8612, 12072, 16720, 22976, 31424, 42528, 57312, 76800, 102254, 135728, 179104, 235264, 307852, 400704, 519808, 671744, 864672, 1109904, 1419456, 1809568, 2300284, 2914272, 3682400
Offset: 0

Views

Author

Michael Somos, Oct 25 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 8*q^2 + 16*q^3 + 32*q^4 + 60*q^5 + 96*q^6 + 160*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2]^2 / (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^4]), {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^12 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^2 + A)^3 * eta(x^8 + A)^9), n))}

Formula

Expansion of chi(q^2)^5 / (chi(-q) * chi(q^4))^2 in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q^4)^12 * eta(q^16)^2 / (eta(q)^2 * eta(q^2)^3 * eta(q^8)^9) in powers of q.
Euler transform of period 16 sequence [ 2, 5, 2, -7, 2, 5, 2, 2, 2, 5, 2, -7, 2, 5, 2, 0, ...].
a(n) = 2 * A215348(n) unless n=0. a(2*n) = A014969(n). a(2*n + 1) = 2 * A232772(n).
a(n) ~ exp(sqrt(n)*Pi)/(4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017