A212320
Irregular triangle: T(n, k) = k! modulo prime(n), 1
2, 2, 1, 4, 2, 6, 3, 1, 6, 2, 6, 2, 10, 5, 2, 5, 1, 10, 2, 6, 11, 3, 5, 9, 7, 11, 6, 1, 12, 2, 6, 7, 1, 6, 8, 13, 15, 14, 1, 12, 3, 8, 1, 16, 2, 6, 5, 6, 17, 5, 2, 18, 9, 4, 10, 16, 15, 16, 9, 1, 18, 2, 6, 1, 5, 7, 3, 1, 9, 21, 1, 12, 18, 22, 8, 13, 14, 22, 4
Offset: 2
Examples
Irregular triangle begins: 2; 2, 1, 4; 2, 6, 3, 1, 6; 2, 6, 2, 10, 5, 2, 5, 1, 10;
Links
- Vyacheslav M. Abramov, A solution to a Paul Erdos problem, arXiv:2504.19392 [math.NT], 2025.
- W. D. Banks, F. Luca, I. E. Shparlinski, and H. Stichtenoth, On the Value Set of n! Modulo a Prime, Turk. J. Math., 29, (2005), 169-174.
- B. Rokowska and A. Schinzel, Sur un problème de M. Erdős, Elem. Math., 15:84-85, 1960, MR117188 (22 #7970). [Broken link]
- Tim Trudgian, There are no socialist primes less than 10^6, arXiv:1310.6403 [math.NT], 2013.
Crossrefs
Cf. A062169.
Programs
-
Mathematica
row[n_] := With[{p = Prime[n]}, Mod[Range[2, p-1]!, p]]; Table[row[n], {n, 2, 9}] // Flatten (* Jean-François Alcover, Oct 25 2013 *)
-
PARI
row(n) = {p = prime(n); for (i = 2, p-1, print1(i! % p, ", ");); print();}
Comments