A212328 Smallest k such that k^3 + 17 is divisible by 3^n.
1, 1, 4, 4, 58, 139, 139, 1597, 1597, 8158, 8158, 67207, 67207, 598648, 2192971, 6975940, 21324847, 21324847, 21324847, 408745336, 1571006803, 8544575605, 29465282011, 29465282011, 217751639665, 500181176146, 1347469785589, 6431201442247, 6431201442247
Offset: 1
Examples
a(4) = 4 because 4^3 + 17 = 81 is divisible by 3^4.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A129805.
Programs
-
Maple
with(numtheory):for n from 1 to 20 do:i:=0:for x from 1 to 10^8 while(i=0) do: z:= x^3 + 17:if irem(z,3^n)=0 then i:=1: printf ( "%d %d \n",n,x):else fi:od:od:
-
PARI
print1(k=1);for(n=2,100,if(Mod(k,3^n)^3!=-17,k+=3^(n-2)* if(Mod(k+3^(n-2),3^n)^3==-17,1,2));print1(", "k)) \\ Charles R Greathouse IV, May 14 2012
Extensions
a(20)-a(29) from Charles R Greathouse IV, May 14 2012
Comments