A212367 Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 8).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 47, 62, 87, 129, 197, 302, 457, 677, 980, 1392, 1957, 2752, 3907, 5630, 8237, 12187, 18123, 26927, 39810, 58472, 85381, 124234, 180677, 263375, 385538, 567036, 837306, 1239408, 1835867, 2717386, 4016173
Offset: 0
Keywords
Examples
a(0) = 1: the empty path. a(1) = 1: UD. a(9) = 2: UDUDUDUDUDUDUDUDUD, UUUUUUUUUDDDDDDDDD. a(10) = 4: UDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUDDDDDDDDD, UUUUUUUUUDDDDDDDDDUD, UUUUUUUUUDUDDDDDDDDD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=8 of A212363.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, a(n-1) +add(a(k)*a(n-8-k), k=1..n-8)) end: seq(a(n), n=0..60); # second Maple program: a:= n-> coeff(series(RootOf(A=1+A*(x-x^8*(1-A)), A), x, n+1), x, n): seq(a(n), n=0..60);
-
Mathematica
With[{k = 8}, CoefficientList[Series[(1 - x + x^k - Sqrt[(1 - x + x^k)^2 - 4*x^k]) / (2*x^k), {x, 0, 40}], x]] (* Vaclav Kotesovec, Sep 02 2014 *)
Formula
G.f. satisfies: A(x) = 1+A(x)*(x-x^8*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-8} a(k)*a(n-8-k) if n>0; a(0) = 1.