cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212369 Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 10).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 68, 85, 112, 156, 226, 333, 490, 712, 1016, 1421, 1949, 2630, 3512, 4676, 6256, 8464, 11620, 16187, 22811, 32366, 46005, 65225, 91967, 128786, 179140, 247861, 341885, 471332, 651041, 902679
Offset: 0

Views

Author

Alois P. Heinz, May 10 2012

Keywords

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(11) = 2: UDUDUDUDUDUDUDUDUDUDUD, UUUUUUUUUUUDDDDDDDDDDD.
a(12) = 4: UDUDUDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUUUDDDDDDDDDDD, UUUUUUUUUUUDDDDDDDDDDDUD, UUUUUUUUUUUDUDDDDDDDDDDD.
		

Crossrefs

Column k=10 of A212363.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1) +add(a(k)*a(n-10-k), k=1..n-10))
        end:
    seq(a(n), n=0..60);
    # second Maple program:
    a:= n-> coeff(series(RootOf(A=1+A*(x-x^10*(1-A)), A), x, n+1), x, n):
    seq(a(n), n=0..60);
  • Mathematica
    With[{k = 10}, CoefficientList[Series[(1 - x + x^k - Sqrt[(1 - x + x^k)^2 - 4*x^k]) / (2*x^k), {x, 0, 50}], x]] (* Vaclav Kotesovec, Sep 02 2014 *)

Formula

G.f. satisfies: A(x) = 1+A(x)*(x-x^10*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-10} a(k)*a(n-10-k) if n>0; a(0) = 1.