cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212393 Expansion of (1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5.

Original entry on oeis.org

1, 1, 2, 5, 14, 30, 72, 195, 485, 1059, 2065, 3682, 6120, 9620, 14454, 20925, 29367, 40145, 53655, 70324, 90610, 115002, 144020, 178215, 218169, 264495, 317837, 378870, 448300, 526864, 615330, 714497, 825195, 948285, 1084659, 1235240, 1400982, 1582870, 1781920
Offset: 0

Views

Author

Bruno Berselli, May 14 2012

Keywords

Comments

In the paper of Kitaev, Remmel and Tiefenbruck (see the Links section), Q_(132)^(0,k,0,0)(x,0) represents a generating function depending on k and x.
For successive values of k we have:
k=1, the g.f. of A000012: 1/(1-x);
k=2, the g.f. of A028310: (1-x+x^2)/(1-x)^2;
k=3, the g.f. (1-2*x+2*x^2+x^3-x^4)/(1-x)^3, whose coefficients (except the first two) are given by A000096 (for n>0);
k=4, the g.f. (1-3*x+4*x^2-x^3+3*x^4-5*x^5+2*x^6)/(1-x)^4, whose coefficients (except the first three) are given by A005586 (for n>0).
This sequence corresponds to the case k=5.

Programs

  • Magma
    m:=39; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5));
  • Mathematica
    CoefficientList[Series[(1 - 4 x + 7 x^2 - 5 x^3 + 4 x^4 - 6 x^5 + 21 x^6 + 18 x^7 - 5 x^8)/(1 - x)^5, {x, 0, 38}], x]
  • PARI
    Vec((1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5+O(x^39))
    

Formula

G.f.: (1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>8, a(0)=a(1)=1, a(2)=2, a(3)=5, a(4)=14, a(5)=30, a(6)=72, a(7)=195, a(8)=485.
a(n) = (n-3)*(31*n^3-369*n^2+1454*n-1560)/24 for n>3, a(0)=a(1)=1, a(2)=2, a(3)=5.
G.f.: 1+x+2*x^2+5*x^3 + 14*x^4*G(0), where G(k)= 1 + x*(k+1)*(124*k^3+192*k^2+89*k+180)/( (2*k+1)*(62*k^3+3*k^2-5*k+84) - x*(2*k+1)*(62*k^3+3*k^2-5*k+84)*(2*k+3)*(62*k^3+189*k^2+187*k+144)/(x*(2*k+3)*(62*k^3+189*k^2+187*k+144) + (k+1)*(124*k^3+192*k^2+89*k+180)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013