A212395 Number of move operations required to sort all permutations of [n] by insertion sort.
0, 0, 3, 23, 164, 1252, 10512, 97344, 990432, 11010528, 132966720, 1734793920, 24330205440, 365150833920, 5840673108480, 99204809356800, 1783428104908800, 33833306484633600, 675513065777356800, 14160039606855475200, 310935875030323200000
Offset: 0
Keywords
Examples
a(0) = a(1) = 0 because 0 or 1 elements are already sorted. a(2) = 3: [1,2] is sorted and [2,1] needs 3 moves. a(3) = 23: [1,2,3]->(0), [1,3,2]->(3), [2,1,3]->(3), [2,3,1]->(4), [3,1,2]->(6), [3,2,1]->(7); sum of all moves gives 0+3+3+4+6+7 = 23.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..448
- Wikipedia, Insertion sort
- Index entries for sequences related to sorting
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)*n + (n-1)! * (n-1)*(n+4)/2) end: seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember; `if`(n<3, [0$2, 3][n+1], ((2*n^3+3*n^2-13*n+4)*a(n-1) -(n+4)* (n-1)^3*a(n-2)) / ((n-2)*(3+n))) end: seq(a(n), n=0..30);
-
Mathematica
a[n_] := n!*(n*(n+7)/4 - 2*HarmonicNumber[n]); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 01 2017, from 2nd formula *)
Comments