A212423 Frobenius pseudoprimes == 2,3 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.
5777, 10877, 75077, 100127, 113573, 161027, 162133, 231703, 430127, 635627, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2662277, 3175883, 3399527, 3452147, 3774377, 3900797, 4109363, 4226777, 4403027, 4828277, 4870847
Offset: 1
Keywords
References
- R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..14070 (terms below 10^13 from Dana Jacobsen's site)
- Jon Grantham, Frobenius Pseudoprimes, Mathematics of Computation, 7 (2000), 873-891.
- Dana Jacobsen, Pseudoprime Statistics, Tables, and Data.
- Eric Weisstein's World of Mathematics, Frobenius Pseudoprime.
Programs
-
PARI
{ isFP23(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x) }
Comments