A212431 Triangle read by rows: row sums, right and left borders are the Bell sequence, or a shifted variant. See Comments for precise definition.
1, 1, 1, 2, 1, 2, 5, 3, 2, 5, 15, 9, 8, 5, 15, 52, 31, 28, 25, 15, 52, 203, 121, 108, 100, 90, 52, 203, 877, 523, 466, 425, 405, 364, 203, 877, 4140, 2469, 2202, 2000, 1875, 1820, 1624, 877, 4140, 21147, 12611, 11250, 10230, 9525, 9100, 8932, 7893, 4140, 21147
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1 2, 1, 2; 5, 3, 2, 5; 15, 9, 8, 5, 15; 52, 31, 28, 25, 15, 52; 203, 121, 108, 100, 90, 52, 203; 877, 523, 466, 425, 405, 364, 203, 877; 4140, 2469, 2202, 2000, 1875, 1820, 1624, 877, 4140; 21147, 12611, 11250, 10230, 9525, 9100, 8932, 7893, 4140, 21147; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+[0, p[1]*x^(n-j)])(b(n-j)* binomial(n-1, j-1)), j=1..n)) end: T:= n-> (p-> seq(`if`(i=n, p[1], coeff( p[2], x, i)), i=0..n))(b(n)): seq(T(n), n=0..12); # Alois P. Heinz, May 16 2017
-
Mathematica
b[n_] := b[n] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, p[[1]]*x^(n - j)}][b[n - j]*Binomial[n - 1, j - 1]], {j, 1, n}]]; T[n_] := Function[p, Table[If[i == n, p[[1]], Coefficient[p[[2]], x, i]], {i, 0, n}]][b[n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 12 2018, after Alois P. Heinz *)
Extensions
Edited by N. J. A. Sloane, Jun 22 2012
Comments