cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212484 Expansion of c(q^2) * b(q^6) / (b(q) * c(q) * b(q^3) * c(q^3))^(1/2) in powers of q where b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 1, 3, 6, 11, 18, 30, 48, 75, 114, 170, 252, 366, 526, 744, 1044, 1451, 1998, 2730, 3700, 4986, 6672, 8876, 11736, 15438, 20207, 26322, 34134, 44072, 56682, 72612, 92680, 117867, 149400, 188758, 237744, 298554, 373838, 466836, 581412, 722266, 895014
Offset: 0

Views

Author

Michael Somos, Jun 02 2012

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + q + 3*q^2 + 6*q^3 + 11*q^4 + 18*q^5 + 30*q^6 + 48*q^7 + 75*q^8 + ...
		

Crossrefs

Cf. A123629.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1-x^(6*k))^6 / ((1-x^k) * (1-x^(2*k)) * (1-x^(3*k))^2 * (1-x^(9*k)) * (1-x^(18*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3]^2 QPochhammer[ q^12]^2 / (QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^9] QPochhammer[ q^18]), {q, 0, n}]; (* Michael Somos, Oct 24 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^6 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^9 + A) * eta(x^18 + A)), n))};

Formula

Expansion of eta(q^6)^6 / (eta(q) * eta(q^2) * eta(q^3)^2 * eta(q^9) * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [1, 2, 3, 2, 1, -2, 1, 2, 4, 2, 1, -2, 1, 2, 3, 2, 1, 0, ...].
a(n) = A123629(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(11/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015