A212484 Expansion of c(q^2) * b(q^6) / (b(q) * c(q) * b(q^3) * c(q^3))^(1/2) in powers of q where b(), c() are cubic AGM theta functions.
1, 1, 3, 6, 11, 18, 30, 48, 75, 114, 170, 252, 366, 526, 744, 1044, 1451, 1998, 2730, 3700, 4986, 6672, 8876, 11736, 15438, 20207, 26322, 34134, 44072, 56682, 72612, 92680, 117867, 149400, 188758, 237744, 298554, 373838, 466836, 581412, 722266, 895014
Offset: 0
Keywords
Examples
G.f. = 1 + q + 3*q^2 + 6*q^3 + 11*q^4 + 18*q^5 + 30*q^6 + 48*q^7 + 75*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500 (terms 0..42 from Michael Somos)
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Crossrefs
Cf. A123629.
Programs
-
Mathematica
nmax=60; CoefficientList[Series[Product[(1-x^(6*k))^6 / ((1-x^k) * (1-x^(2*k)) * (1-x^(3*k))^2 * (1-x^(9*k)) * (1-x^(18*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3]^2 QPochhammer[ q^12]^2 / (QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^9] QPochhammer[ q^18]), {q, 0, n}]; (* Michael Somos, Oct 24 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^6 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^9 + A) * eta(x^18 + A)), n))};
Formula
Expansion of eta(q^6)^6 / (eta(q) * eta(q^2) * eta(q^3)^2 * eta(q^9) * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [1, 2, 3, 2, 1, -2, 1, 2, 4, 2, 1, -2, 1, 2, 3, 2, 1, 0, ...].
a(n) = A123629(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(11/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Comments