A212485 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.
1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1
Examples
Triangle T(n,k) begins: 1, 2, 4; 3, 6, 8, 12, 24; 31, 62, 124; 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624; 11, 22, 44, 71, 142, 284, 781, 1562, 3124; ...
References
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.
Links
- Alois P. Heinz, Rows n = 1..32, flattened
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
Crossrefs
Programs
-
Maple
with(numtheory): M:= proc(n) option remember; `if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1)) end: U:= proc(n) option remember; `if`(n=0, {}, M(n) union U(n-1)) end: T:= n-> sort([M(n)[]])[]: seq(T(n), n=1..8);
-
Mathematica
M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]]; U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]]; T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)
Formula
T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (5^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,4}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(5^d-1) = A059887.
Comments