A212486 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(7) listed in ascending order.
1, 2, 3, 6, 4, 8, 12, 16, 24, 48, 9, 18, 19, 38, 57, 114, 171, 342, 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400, 2801, 5602, 8403, 16806, 36, 43, 72, 76, 86, 129, 144, 152, 172, 228, 258
Offset: 1
Examples
Triangle T(n,k) begins: 1, 2, 3, 6; 4, 8, 12, 16, 24, 48; 9, 18, 19, 38, 57, 114, 171, 342; 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400; ...
References
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 560-562.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..102
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Gang Xiao, (computes the order of an irreducible polynomial over a finite field GF(p))
Crossrefs
Programs
-
Maple
with(numtheory): M:= proc(n) option remember; `if`(n=1, {1, 2, 3, 6}, divisors(7^n-1) minus U(n-1)) end: U:= proc(n) option remember; `if`(n=0, {}, M(n) union U(n-1)) end: T:= n-> sort([M(n)[]])[]: seq(T(n), n=1..7);
-
Mathematica
M[n_] := M[n] = If[n == 1, {1, 2, 3, 6}, Divisors[7^n - 1] ~Complement~ U[n - 1]]; U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Sep 24 2022, from Maple code *)
Formula
T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (7^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,3,6}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(7^d-1) = A059889(n).
Comments