cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059889 a(n) = |{m : multiplicative order of 7 mod m=n}|.

Original entry on oeis.org

4, 6, 8, 26, 4, 42, 12, 48, 52, 66, 12, 778, 4, 138, 80, 300, 12, 528, 12, 1430, 72, 138, 28, 15216, 24, 66, 1216, 966, 28, 3630, 28, 1344, 360, 58, 108, 16988, 28, 138, 176, 12752, 28, 7398, 12, 4422, 1900, 122, 12, 131028, 240, 536, 744, 1046, 28, 23744, 44
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) = number of orders of degree n monic irreducible polynomials over GF(7).
Also, number of primitive factors of 7^n - 1 (cf. A218358). - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), this sequence (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=7 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(7^d-1), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 7^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(7^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(7^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A212737 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k lists the orders of degree-d irreducible polynomials over GF(prime(k)); listing order for each column: ascending d, ascending value.

Original entry on oeis.org

1, 1, 3, 1, 2, 7, 1, 2, 4, 5, 1, 2, 4, 8, 15, 1, 2, 3, 3, 13, 31, 1, 2, 5, 6, 6, 26, 9, 1, 2, 3, 10, 4, 8, 5, 21, 1, 2, 4, 4, 3, 8, 12, 10, 63, 1, 2, 3, 8, 6, 4, 12, 24, 16, 127, 1, 2, 11, 6, 16, 12, 6, 16, 31, 20, 17, 1, 2, 4, 22, 9, 3, 7, 8, 24, 62, 40, 51
Offset: 1

Views

Author

Alois P. Heinz, Jun 02 2012

Keywords

Examples

			For k=1 the irreducible polynomials over GF(prime(1)) = GF(2) of degree 1-4 are: x, 1+x; 1+x+x^2; 1+x+x^3, 1+x^2+x^3; 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. The orders of these polynomials p (i.e., the smallest integer e for which p divides x^e+1) are 1; 3; 7; 5, 15. (Example: (1+x^3+x^4) * (1+x^3+x^4+x^6+x^8+x^9+x^10+x^11) == x^15+1 (mod 2)). Thus column k=1 begins: 1, 3, 7, 5, 15, ... .
Square array A(n,k) begins:
    1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
    3,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
    7,  4,  4,  3,  5,  3,  4,  3, 11,  4, ...
    5,  8,  3,  6, 10,  4,  8,  6, 22,  7, ...
   15, 13,  6,  4,  3,  6, 16,  9,  3, 14, ...
   31, 26,  8,  8,  4, 12,  3, 18,  4, 28, ...
    9,  5, 12, 12,  6,  7,  6,  4,  6,  3, ...
   21, 10, 24, 16,  8,  8,  9,  5,  8,  5, ...
   63, 16, 31, 24, 12, 14, 12,  8, 12,  6, ...
  127, 20, 62, 48, 15, 21, 18, 10, 16,  8, ...
		

Crossrefs

Programs

Formula

Formulae for the column sequences are given in A059912, A212906, ... .

A213224 Minimal order A(n,k) of degree-n irreducible polynomials over GF(prime(k)); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 3, 13, 5, 1, 4, 31, 5, 31, 1, 3, 9, 13, 11, 9, 1, 7, 7, 5, 11, 7, 127, 1, 3, 9, 16, 2801, 7, 1093, 17, 1, 4, 307, 5, 25, 36, 19531, 32, 73, 1, 3, 27, 5, 30941, 9, 29, 32, 757, 11, 1, 3, 7, 16, 88741, 63, 43, 64, 19, 44, 23
Offset: 1

Views

Author

Alois P. Heinz, Jun 06 2012

Keywords

Comments

Maximal order of degree-n irreducible polynomials over GF(prime(k)) is prime(k)^n-1 and thus A(n,k) < prime(k)^n.

Examples

			A(4,1) = 5: The degree-4 irreducible polynomials p over GF(prime(1)) = GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15, and the minimal order is 5. (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2).
Square array A(n,k) begins:
    1,    1,     1,    1,   1,       1,        1,   1, ...
    3,    4,     3,    4,   3,       7,        3,   4, ...
    7,   13,    31,    9,   7,       9,      307,  27, ...
    5,    5,    13,    5,  16,       5,        5,  16, ...
   31,   11,    11, 2801,  25,   30941,    88741, 151, ...
    9,    7,     7,   36,   9,      63,        7,   7, ...
  127, 1093, 19531,   29,  43, 5229043, 25646167, 701, ...
   17,   32,    32,   64,  32,      32,      128,  17, ...
		

Crossrefs

Columns k=1-10 are first columns of: A059912, A212906, A212485, A212486, A218336, A218337, A218338, A218339, A218340, A218341.
Cf. A212737 (all orders).

Programs

  • Maple
    with(numtheory):
    M:= proc(n, i) option remember;
          divisors(ithprime(i)^n-1) minus U(n-1, i)
        end:
    U:= proc(n, i) option remember;
          `if`(n=0, {}, M(n, i) union U(n-1, i))
        end:
    A:= (n, k)-> min(M(n, k)[]):
    seq(seq(A(n, d+1-n), n=1..d), d=1..14);
  • Mathematica
    M[n_, i_] := M[n, i] = Divisors[Prime[i]^n - 1] ~Complement~ U[n-1, i]; U[n_, i_] := U[n, i] = If[n == 0, {}, M[n, i] ~Union~ U[n-1, i]]; A[n_, k_] := Min[M[n, k]]; Table[Table[A[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

Formula

A(n,k) = min(M(n,k)) with M(n,k) = {d : d|(prime(k)^n-1)} \ U(n-1,k) and U(n,k) = M(n,k) union U(n-1,k) for n>0, U(0,k) = {}.

A059912 Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n).

Original entry on oeis.org

1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855
Offset: 1

Views

Author

Vladeta Jovovic, Feb 09 2001

Keywords

Comments

A permutation of the odd positive numbers; namely, order each odd number d by the multiplicative order of 2 modulo d (in case of a tie, smaller d go first). - Jeppe Stig Nielsen, Feb 13 2020

Examples

			There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127.
Triangle T(n,k) begins:
    1;
    3;
    7;
    5,   15;
   31;
    9,   21,  63;
  127;
   17,   51,  85, 255;
   73,  511;
   11,   33,  93, 341, 1023;
  ...
		

Crossrefs

Column k=1 of A212737.
Column k=1 gives: A212953.
Last elements of rows give: A000225.
Cf. A108974.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          divisors(2^n-1) minus U(n-1)
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..20);  # Alois P. Heinz, May 31 2012
  • Mathematica
    m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-François Alcover, Jun 14 2012, after Alois P. Heinz *)
  • PARI
    maxDegree=26;for(n=1,maxDegree,forstep(d=1,2^n,2,znorder(Mod(2,d))==n&&print1(d,", "))) \\ inefficient, Jeppe Stig Nielsen, Feb 13 2020

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(2^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. - Alois P. Heinz, Jun 01 2012

A218358 Minimal order of degree-n irreducible polynomials over GF(7).

Original entry on oeis.org

1, 4, 9, 5, 2801, 36, 29, 64, 27, 11, 1123, 13, 16148168401, 113, 31, 17, 14009, 108, 419, 55, 261, 23, 47, 73, 2551, 53, 81, 145, 59, 99, 311, 256, 3631, 56036, 81229, 135, 223, 1676, 486643, 41, 83, 1017, 166003607842448777, 115, 837, 188, 13722816749522711
Offset: 1

Views

Author

Alois P. Heinz, Oct 27 2012

Keywords

Comments

a(n) < 7^n.

Crossrefs

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(7^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    a:= n-> min(M(n)[]):
    seq(a(n), n=1..42);
  • Mathematica
    M[n_] := M[n] = Divisors[7^n - 1]~Complement~U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
    a[n_] := Min[M[n]];
    Table[a[n], {n, 1, 47}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)

Formula

a(n) = min(M(n)) with M(n) = {d : d|(7^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A212486(n,1) = A213224(n,4).
Showing 1-5 of 5 results.