A213224
Minimal order A(n,k) of degree-n irreducible polynomials over GF(prime(k)); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 7, 1, 3, 13, 5, 1, 4, 31, 5, 31, 1, 3, 9, 13, 11, 9, 1, 7, 7, 5, 11, 7, 127, 1, 3, 9, 16, 2801, 7, 1093, 17, 1, 4, 307, 5, 25, 36, 19531, 32, 73, 1, 3, 27, 5, 30941, 9, 29, 32, 757, 11, 1, 3, 7, 16, 88741, 63, 43, 64, 19, 44, 23
Offset: 1
A(4,1) = 5: The degree-4 irreducible polynomials p over GF(prime(1)) = GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15, and the minimal order is 5. (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 3, 4, 3, 7, 3, 4, ...
7, 13, 31, 9, 7, 9, 307, 27, ...
5, 5, 13, 5, 16, 5, 5, 16, ...
31, 11, 11, 2801, 25, 30941, 88741, 151, ...
9, 7, 7, 36, 9, 63, 7, 7, ...
127, 1093, 19531, 29, 43, 5229043, 25646167, 701, ...
17, 32, 32, 64, 32, 32, 128, 17, ...
-
with(numtheory):
M:= proc(n, i) option remember;
divisors(ithprime(i)^n-1) minus U(n-1, i)
end:
U:= proc(n, i) option remember;
`if`(n=0, {}, M(n, i) union U(n-1, i))
end:
A:= (n, k)-> min(M(n, k)[]):
seq(seq(A(n, d+1-n), n=1..d), d=1..14);
-
M[n_, i_] := M[n, i] = Divisors[Prime[i]^n - 1] ~Complement~ U[n-1, i]; U[n_, i_] := U[n, i] = If[n == 0, {}, M[n, i] ~Union~ U[n-1, i]]; A[n_, k_] := Min[M[n, k]]; Table[Table[A[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
A059912
Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n).
Original entry on oeis.org
1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855
Offset: 1
There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127.
Triangle T(n,k) begins:
1;
3;
7;
5, 15;
31;
9, 21, 63;
127;
17, 51, 85, 255;
73, 511;
11, 33, 93, 341, 1023;
...
Last elements of rows give:
A000225.
-
with(numtheory):
M:= proc(n) option remember;
divisors(2^n-1) minus U(n-1)
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..20); # Alois P. Heinz, May 31 2012
-
m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-François Alcover, Jun 14 2012, after Alois P. Heinz *)
-
maxDegree=26;for(n=1,maxDegree,forstep(d=1,2^n,2,znorder(Mod(2,d))==n&&print1(d,", "))) \\ inefficient, Jeppe Stig Nielsen, Feb 13 2020
A212906
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1
Triangle T(n,k) begins:
1, 2;
4, 8;
13, 26;
5, 10, 16, 20, 40, 80;
11, 22, 121, 242;
7, 14, 28, 52, 56, 91, 104, 182, 364, 728;
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
-
with(numtheory):
M:= proc(n) option remember;
divisors(3^n-1) minus U(n-1)
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..15); # Alois P. Heinz, Jun 02 2012
-
M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
A212485
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1
Triangle T(n,k) begins:
1, 2, 4;
3, 6, 8, 12, 24;
31, 62, 124;
13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624;
11, 22, 44, 71, 142, 284, 781, 1562, 3124;
...
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.
-
with(numtheory):
M:= proc(n) option remember;
`if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1))
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..8);
-
M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)
A212486
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(7) listed in ascending order.
Original entry on oeis.org
1, 2, 3, 6, 4, 8, 12, 16, 24, 48, 9, 18, 19, 38, 57, 114, 171, 342, 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400, 2801, 5602, 8403, 16806, 36, 43, 72, 76, 86, 129, 144, 152, 172, 228, 258
Offset: 1
Triangle T(n,k) begins:
1, 2, 3, 6;
4, 8, 12, 16, 24, 48;
9, 18, 19, 38, 57, 114, 171, 342;
5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400;
...
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 560-562.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
-
with(numtheory):
M:= proc(n) option remember;
`if`(n=1, {1, 2, 3, 6}, divisors(7^n-1) minus U(n-1))
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..7);
-
M[n_] := M[n] = If[n == 1, {1, 2, 3, 6}, Divisors[7^n - 1] ~Complement~ U[n - 1]];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Sep 24 2022, from Maple code *)
A218336
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(11) listed in ascending order.
Original entry on oeis.org
1, 2, 5, 10, 3, 4, 6, 8, 12, 15, 20, 24, 30, 40, 60, 120, 7, 14, 19, 35, 38, 70, 95, 133, 190, 266, 665, 1330, 16, 48, 61, 80, 122, 183, 240, 244, 305, 366, 488, 610, 732, 915, 976, 1220, 1464, 1830, 2440, 2928, 3660, 4880, 7320, 14640, 25, 50, 3221, 6442
Offset: 1
Triangle begins:
1, 2, 5, 10;
3, 4, 6, 8, 12, 15, 20, 24, 30, 40, ...
7, 14, 19, 35, 38, 70, 95, 133, 190, 266, ...
16, 48, 61, 80, 122, 183, 240, 244, 305, 366, ...
25, 50, 3221, 6442, 16105, 32210, 80525, 161050;
...
Last elements of rows give:
A024127.
-
with(numtheory):
M:= proc(n) M(n):= divisors(11^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..5);
-
M[n_] := M[n] = Divisors[11^n - 1] ~Complement~ U[n-1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)
A218337
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(13) listed in ascending order.
Original entry on oeis.org
1, 2, 3, 4, 6, 12, 7, 8, 14, 21, 24, 28, 42, 56, 84, 168, 9, 18, 36, 61, 122, 183, 244, 366, 549, 732, 1098, 2196, 5, 10, 15, 16, 17, 20, 30, 34, 35, 40, 48, 51, 60, 68, 70, 80, 85, 102, 105, 112, 119, 120, 136, 140, 170, 204, 210, 238, 240, 255, 272, 280, 336
Offset: 1
Triangle begins:
: 1, 2, 3, 4, 6, 12;
: 7, 8, 14, 21, 24, 28, 42, 56, 84, 168;
: 9, 18, 36, 61, 122, 183, 244, 366, 549, ...
: 5, 10, 15, 16, 17, 20, 30, 34, 35, ...
: 30941, 61882, 92823, 123764, 185646, 371292;
-
with(numtheory):
M:= proc(n) M(n):= divisors(13^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..5);
-
M[n_] := Divisors[13^n-1] ~Complement~ U[n-1]; U[n_] := If[n == 0, {}, M[n] ~Union~ U[n-1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
A218338
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(17) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 8, 16, 3, 6, 9, 12, 18, 24, 32, 36, 48, 72, 96, 144, 288, 307, 614, 1228, 2456, 4912, 5, 10, 15, 20, 29, 30, 40, 45, 58, 60, 64, 80, 87, 90, 116, 120, 145, 160, 174, 180, 192, 232, 240, 261, 290, 320, 348, 360, 435, 464, 480, 522, 576, 580, 696, 720
Offset: 1
Triangle begins:
1, 2, 4, 8, 16;
3, 6, 9, 12, 18, 24, 32, 36, 48, 72, ...
307, 614, 1228, 2456, 4912;
5, 10, 15, 20, 29, 30, 40, 45, 58, 60, ...
88741, 177482, 354964, 709928, 1419856;
-
with(numtheory):
M:= proc(n) M(n):= divisors(17^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..5);
-
M[n_] := M[n] = Divisors[17^n-1] ~Complement~ U[n-1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)
A218339
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(19) listed in ascending order.
Original entry on oeis.org
1, 2, 3, 6, 9, 18, 4, 5, 8, 10, 12, 15, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360, 27, 54, 127, 254, 381, 762, 1143, 2286, 3429, 6858, 16, 48, 80, 144, 181, 240, 362, 543, 720, 724, 905, 1086, 1448, 1629, 1810, 2172, 2715, 2896, 3258, 3620, 4344, 5430
Offset: 1
Triangle begins:
1, 2, 3, 6, 9, 18;
4, 5, 8, 10, 12, 15, 20, 24, 30, 36, 40, ...
27, 54, 127, 254, 381, 762, 1143, 2286, 3429, 6858;
16, 48, 80, 144, 181, 240, 362, 543, 720, 724, 905, ...
151, 302, 453, 906, 911, 1359, 1822, 2718, 2733, 5466, 8199, ...
...
-
with(numtheory):
M:= proc(n) M(n):= divisors(19^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..5);
-
M[n_] := M[n] = Divisors[19^n-1] ~Complement~ U[n-1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)
A218340
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(23) listed in ascending order.
Original entry on oeis.org
1, 2, 11, 22, 3, 4, 6, 8, 12, 16, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528, 7, 14, 77, 79, 154, 158, 553, 869, 1106, 1738, 6083, 12166, 5, 10, 15, 20, 30, 32, 40, 53, 55, 60, 80, 96, 106, 110, 120, 159, 160, 165, 212, 220, 240, 265, 318, 330, 352, 424, 440
Offset: 1
Triangle begins:
1, 2, 11, 22;
3, 4, 6, 8, 12, 16, 24, 33, 44, ...
7, 14, 77, 79, 154, 158, 553, 869, 1106, ...
5, 10, 15, 20, 30, 32, 40, 53, 55, ...
292561, 585122, 3218171, 6436342;
...
-
with(numtheory):
M:= proc(n) M(n):= divisors(23^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..5);
-
M[n_] := M[n] = Divisors[23^n-1] ~Complement~ U[n-1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)
Showing 1-10 of 11 results.
Comments