A212496 a(n) = Sum_{k=1..n} (-1)^(k-Omega(k)) with Omega(k) the total number of prime factors of k (counted with multiplicity).
-1, -2, -1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 5, 6, 5, 6, 7, 8, 7, 8, 9, 8, 9, 8, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 7, 8, 7, 8, 9, 10
Offset: 1
Examples
We have a(4)=0 since (-1)^(1-Omega(1)) + (-1)^(2-Omega(2)) + (-1)^(3-Omega(3)) + (-1)^(4-Omega(4)) = -1 - 1 + 1 + 1 = 0.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, On a pair of zeta functions, preprint, arxiv:1204.6689 [math.NT], 2012-2016.
- Zhi-Wei Sun, On the parities of Omega(n)-n, a message to Number Theory List, May 18, 2012.
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10^7 (rar-compressed)
Programs
-
Maple
ListTools:-PartialSums([seq((-1)^(k-numtheory:-bigomega(k)),k=1..60)]); # Robert Israel, Jan 03 2023
-
Mathematica
PrimeDivisor[n_]:=Part[Transpose[FactorInteger[n]],1] Omega[n_]:=If[n==1,0,Sum[IntegerExponent[n,Part[PrimeDivisor[n],i]],{i,1,Length[PrimeDivisor[n]]}]] s[0]=0 s[n_]:=s[n]=s[n-1]+(-1)^(n-Omega[n]) Do[Print[n," ",s[n]],{n,1,100000}] Accumulate[Table[(-1)^(n-PrimeOmega[n]),{n,1000}]] (* Harvey P. Dale, Oct 07 2013 *)
-
PARI
a(n)=sum(k=1,n, (-1)^(bigomega(k)+k)) \\ Charles R Greathouse IV, Jul 31 2016
-
Python
from functools import reduce from operator import ixor from sympy import factorint def A212496(n): return sum(-1 if reduce(ixor, factorint(i).values(),i)&1 else 1 for i in range(1,n+1)) # Chai Wah Wu, Jan 03 2023
Comments