A212505 Number of (w,x,y,z) with all terms in {1,...,n} and w<2x and y>=2z.
0, 0, 3, 14, 48, 114, 243, 444, 768, 1220, 1875, 2730, 3888, 5334, 7203, 9464, 12288, 15624, 19683, 24390, 30000, 36410, 43923, 52404, 62208, 73164, 85683, 99554, 115248, 132510, 151875, 173040, 196608, 222224, 250563, 281214, 314928
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Crossrefs
Cf. A211795.
Programs
-
Maple
a:= n-> floor(n^2/4)*ceil(n^2*3/4): seq(a(n), n=0..40); # Alois P. Heinz, Aug 13 2013
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w < 2 x && y >= 2 z, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]] (* A212505 *)
Formula
a(n) = 2a(n-1)+2a(n-2)-6a(n-3)+6a(n-5)-2a(n-6)-2a(n-7)+a(n-8).
From Alois P. Heinz, May 31 2012: (Start)
G.f.: x^2*(x^2+2*x+3)*(3*x^2+2*x+1) / ((x+1)^3*(1-x)^5). (End)
Comments