A212523
Number of (w,x,y,z) with all terms in {1,...,n} and w+x
0, 0, 5, 31, 106, 270, 575, 1085, 1876, 3036, 4665, 6875, 9790, 13546, 18291, 24185, 31400, 40120, 50541, 62871, 77330, 94150, 113575, 135861, 161276, 190100, 222625, 259155, 300006, 345506, 395995, 451825, 513360, 580976, 655061
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A211795.
Programs
-
Magma
I:=[0, 0, 5, 31, 106]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2) +10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jun 09 2012
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w + x < y + z, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]] (* A212523 *) LinearRecurrence[{5,-10, 10, -5, 1},{0,0,5,31,106},60] (* Vincenzo Librandi, Jun 09 2012 *)
Formula
a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+a(n-5).
a(n) = Sum_{i=0..n-1} A048395(i). - J. M. Bergot, Jun 08 2012
G.f.: -x^2*(x+5)*(1+x)/(x-1)^5 . - R. J. Mathar, Sep 23 2016
Comments