cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212541 Let p_n=prime(n), n>=1. Then a(n) is the maximal prime p which differs from p_n, for which the intervals (p/2,p_n/2), (p,p_n], if pp_n, contain the same number of primes, and a(n)=0, if no such prime p exists.

Original entry on oeis.org

0, 11, 11, 11, 7, 17, 13, 29, 29, 23, 41, 41, 37, 47, 43, 59, 53, 67, 61, 0, 97, 97, 97, 97, 89, 0, 107, 103, 127, 149, 109, 149, 149, 151, 137, 139, 167, 167, 163, 179, 173, 0, 227, 229, 229, 233, 229, 227, 223, 211, 199, 0, 0, 263, 263, 257, 0, 281, 281
Offset: 1

Views

Author

Keywords

Comments

a(n)A104272).
a(n)=0 if and only if p_n is a peculiar prime, i.e., simultaneously Ramanujan and Labos (A080359) prime (see sequence A164554).

Examples

			Let n=4, p_n=7. Since 7 is not Ramanujan prime, then a(4) = A104272(4-pi(3.5)) = A104272(2) = 11.
		

Crossrefs

Formula

If p_n is not a Ramanujan prime, then a(n) = A104272(n-pi(p_n/2)).