A212543 Number of partitions of n containing at least one part m-3 if m is the largest part.
0, 0, 1, 1, 3, 4, 8, 10, 17, 22, 33, 42, 60, 75, 103, 128, 169, 209, 271, 331, 421, 513, 642, 777, 963, 1158, 1421, 1703, 2070, 2471, 2985, 3546, 4257, 5043, 6019, 7105, 8443, 9933, 11752, 13790, 16247, 19012, 22326, 26052, 30492, 35500, 41420, 48108, 55980
Offset: 3
Keywords
Examples
a(5) = 1: [4,1]. a(6) = 1: [4,1,1]. a(7) = 3: [4,1,1,1], [4,2,1], [5,2]. a(8) = 4: [4,1,1,1,1], [4,2,1,1], [4,3,1], [5,2,1]. a(9) = 8: [4,1,1,1,1,1], [4,2,1,1,1], [4,2,2,1], [4,3,1,1], [4,4,1], [5,2,1,1], [5,2,2], [6,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Column k=3 of A212551.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i))) end: a:= n-> add(b(n-2*m-3, min(n-2*m-3, m+3)), m=1..(n-3)/2): seq(a(n), n=3..60);
-
Mathematica
Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]-3]&)],{n,3,60}] (* _Harvey P. Dale, Mar 01 2015 *) b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]; a[n_] := Sum[b[n - 2 m - 3, Min[n - 2 m - 3, m + 3]], {m, 1, (n - 3)/2}]; a /@ Range[3, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{i>0} x^(2*i+3) / Product_{j=1..3+i} (1-x^j).