A212544 Number of partitions of n containing at least one part m-4 if m is the largest part.
0, 0, 1, 1, 3, 4, 8, 11, 18, 24, 37, 48, 69, 89, 122, 155, 207, 259, 337, 419, 534, 657, 827, 1008, 1252, 1518, 1864, 2246, 2736, 3276, 3960, 4722, 5668, 6727, 8032, 9492, 11274, 13279, 15696, 18424, 21694, 25380, 29772, 34736, 40604, 47244, 55060, 63897
Offset: 4
Keywords
Examples
a(6) = 1: [5,1]. a(7) = 1: [5,1,1]. a(8) = 3: [5,1,1,1], [5,2,1], [6,2]. a(9) = 4: [5,1,1,1,1], [5,2,1,1], [5,3,1], [6,2,1]. a(10) = 8: [5,1,1,1,1,1], [5,2,1,1,1], [5,2,2,1], [5,3,1,1], [5,4,1], [6,2,1,1], [6,2,2], [7,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=4 of A212551.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i))) end: a:= n-> add(b(n-2*m-4, min(n-2*m-4, m+4)), m=1..(n-4)/2): seq(a(n), n=4..60);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]; a[n_] := Sum[b[n - 2 m - 4, Min[n - 2 m - 4, m + 4]], {m, 1, (n - 4)/2}]; a /@ Range[4, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{i>0} x^(2*i+4) / Product_{j=1..4+i} (1-x^j).